R&S®SMF100A Microwave Signal Generator Operating Manual

This document describes the R&S®SMF100A, stock no. 1167.0000.02 and its options.

- R&S®SMF-B1
- R&S®SMF-B2
- R&S®SMF-B20
- R&S®SMF-B22
- R&S®SMF-B27
- R&S®SMF-B32/-B34
- R&S®SMF-B81/B82
- R&S®SMF-B83/-B84/-B85
- R&S®SMF-B122/-B144/-B131/-B144N
- R&S®SMF-K3
- R&S®SMF-K4
- R&S®SMF-K23/-K27
- R&S®SMF-K28

This manual describes firmware version FW 3.20.390.24 and later of the R&S®SMF100A.

© 2016 Rohde & Schwarz GmbH & Co. KG Mühldorfstr. 15, 81671 München, Germany

Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
Email: info@rohde-schwarz.com
Internet: www.rohde-schwarz.com

Subject to change – Data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.

Trade names are trademarks of the owners.

The following abbreviations are used throughout this manual: R&S®SMF100A is abbreviated as R&S SMF, the R&S®SMZ75/90/110/170 is abbreviated as R&S®SMZ, Linux® is abbreviated as Linux.

Always read through and comply with the following safety instructions!

All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety standards of our products up to date and to offer our customers the highest possible degree of safety. Our products and the auxiliary equipment they require are designed, built and tested in accordance with the safety standards that apply in each case. Compliance with these standards is continuously monitored by our quality assurance system. The product described here has been designed, built and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, you must observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, the Rohde & Schwarz group of companies will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for any purpose other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its product documentation and within its performance limits (see data sheet, documentation, the following safety instructions). Using the product requires technical skills and, in some cases, a basic knowledge of English. It is therefore essential that only skilled and specialized staff or thoroughly trained personnel with the required skills be allowed to use the product. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation. Keep the basic safety instructions and the product documentation in a safe place and pass them on to the subsequent users.

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before and when using the product. It is also absolutely essential to observe the additional safety instructions on personal safety, for example, that appear in relevant parts of the product documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by the Rohde & Schwarz group of companies, including instruments, systems and all accessories. For product-specific information, see the data sheet and the product documentation.

Safety labels on products

The following safety labels are used on products to warn against risks and dangers.

Symbol	Meaning	Symbol	Meaning
	Notice, general danger location Observe product documentation	10	ON/OFF Power
18 kg	Caution when handling heavy equipment	()	Standby indication
A	Danger of electric shock	==	Direct current (DC)

Symbol	Meaning	Symbol	Meaning
	Caution! Hot surface	\sim	Alternating current (AC)
	Protective conductor terminal To identify any terminal which is intended for connection to an external conductor for protection against electric shock in case of a fault, or the terminal of a protective earth	\sim	Direct/alternating current (DC/AC)
1	Earth (Ground)		Class II Equipment to identify equipment meeting the safety requirements specified for Class II equipment (device protected by double or reinforced insulation)
	Frame or chassis Ground terminal		EU labeling for batteries and accumulators For additional information, see section "Waste disposal/Environmental protection", item 1.
	Be careful when handling electrostatic sensitive devices		EU labeling for separate collection of electrical and electronic devices For additional information, see section "Waste disposal/Environmental protection", item 2.
	Warning! Laser radiation For additional information, see section "Operation", item 7.		

Signal words and their meaning

The following signal words are used in the product documentation in order to warn the reader about risks and dangers.

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Indicates information considered important, but not hazard-related, e.g. messages relating to property damage.

In the product documentation, the word ATTENTION is used synonymously.

These signal words are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist in other economic areas or military applications. It is therefore essential to make sure that the signal words described here are always used only in connection with the related product documentation and the related product. The use of signal words in connection with unrelated products or documentation can result in misinterpretation and in personal injury or material damage.

Operating states and operating positions

The product may be operated only under the operating conditions and in the positions specified by the manufacturer, without the product's ventilation being obstructed. If the manufacturer's specifications are not observed, this can result in electric shock, fire and/or serious personal injury or death. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.

- Unless otherwise specified, the following requirements apply to Rohde & Schwarz products: predefined operating position is always with the housing floor facing down, IP protection 2X, use only indoors, max. operating altitude 2000 m above sea level, max. transport altitude 4500 m above sea level. A tolerance of ±10 % shall apply to the nominal voltage and ±5 % to the nominal frequency, overvoltage category 2, pollution degree 2.
- 2. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves). An installation that is not carried out as described in the product documentation could result in personal injury or even death.
- 3. Do not place the product on heat-generating devices such as radiators or fan heaters. The ambient temperature must not exceed the maximum temperature specified in the product documentation or in the data sheet. Product overheating can cause electric shock, fire and/or serious personal injury or even death.

Electrical safety

If the information on electrical safety is not observed either at all or to the extent necessary, electric shock, fire and/or serious personal injury or death may occur.

- 1. Prior to switching on the product, always ensure that the nominal voltage setting on the product matches the nominal voltage of the mains-supply network. If a different voltage is to be set, the power fuse of the product may have to be changed accordingly.
- 2. In the case of products of safety class I with movable power cord and connector, operation is permitted only on sockets with a protective conductor contact and protective conductor.
- 3. Intentionally breaking the protective conductor either in the feed line or in the product itself is not permitted. Doing so can result in the danger of an electric shock from the product. If extension cords or connector strips are implemented, they must be checked on a regular basis to ensure that they are safe to use.
- 4. If there is no power switch for disconnecting the product from the mains, or if the power switch is not suitable for this purpose, use the plug of the connecting cable to disconnect the product from the mains. In such cases, always ensure that the power plug is easily reachable and accessible at all times. For example, if the power plug is the disconnecting device, the length of the connecting cable must not exceed 3 m. Functional or electronic switches are not suitable for providing disconnection from the AC supply network. If products without power switches are integrated into racks or systems, the disconnecting device must be provided at the system level.
- 5. Never use the product if the power cable is damaged. Check the power cables on a regular basis to ensure that they are in proper operating condition. By taking appropriate safety measures and carefully laying the power cable, ensure that the cable cannot be damaged and that no one can be hurt by, for example, tripping over the cable or suffering an electric shock.

- 6. The product may be operated only from TN/TT supply networks fuse-protected with max. 16 A (higher fuse only after consulting with the Rohde & Schwarz group of companies).
- 7. Do not insert the plug into sockets that are dusty or dirty. Insert the plug firmly and all the way into the socket provided for this purpose. Otherwise, sparks that result in fire and/or injuries may occur.
- 8. Do not overload any sockets, extension cords or connector strips; doing so can cause fire or electric shocks.
- For measurements in circuits with voltages V_{rms} > 30 V, suitable measures (e.g. appropriate
 measuring equipment, fuse protection, current limiting, electrical separation, insulation) should be
 taken to avoid any hazards.
- 10. Ensure that the connections with information technology equipment, e.g. PCs or other industrial computers, comply with the IEC 60950-1 / EN 60950-1 or IEC 61010-1 / EN 61010-1 standards that apply in each case.
- 11. Unless expressly permitted, never remove the cover or any part of the housing while the product is in operation. Doing so will expose circuits and components and can lead to injuries, fire or damage to the product.
- 12. If a product is to be permanently installed, the connection between the protective conductor terminal on site and the product's protective conductor must be made first before any other connection is made. The product may be installed and connected only by a licensed electrician.
- 13. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fuse-protected in such a way that anyone who has access to the product, as well as the product itself, is adequately protected from injury or damage.
- 14. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the person operating the product will be exposed to the danger of an electric shock.
- 15. Any object that is not designed to be placed in the openings of the housing must not be used for this purpose. Doing so can cause short circuits inside the product and/or electric shocks, fire or injuries.
- 16. Unless specified otherwise, products are not liquid-proof (see also section "Operating states and operating positions", item 1). Therefore, the equipment must be protected against penetration by liquids. If the necessary precautions are not taken, the user may suffer electric shock or the product itself may be damaged, which can also lead to personal injury.
- 17. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product has been moved from a cold to a warm environment. Penetration by water increases the risk of electric shock.
- 18. Prior to cleaning the product, disconnect it completely from the power supply (e.g. AC supply network or battery). Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such as alcohol, acetone or diluents for cellulose lacquers.

Operation

Operating the products requires special training and intense concentration. Make sure that persons
who use the products are physically, mentally and emotionally fit enough to do so; otherwise, injuries
or material damage may occur. It is the responsibility of the employer/operator to select suitable
personnel for operating the products.

- 2. Before you move or transport the product, read and observe the section titled "Transport".
- 3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens) such as nickel cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties) when using a Rohde & Schwarz product, consult a physician immediately to determine the cause and to prevent health problems or stress
- 4. Before you start processing the product mechanically and/or thermally, or before you take it apart, be sure to read and pay special attention to the section titled "Waste disposal/Environmental protection", item 1.
- 5. Depending on the function, certain products such as RF radio equipment can produce an elevated level of electromagnetic radiation. Considering that unborn babies require increased protection, pregnant women must be protected by appropriate measures. Persons with pacemakers may also be exposed to risks from electromagnetic radiation. The employer/operator must evaluate workplaces where there is a special risk of exposure to radiation and, if necessary, take measures to avert the potential danger.
- 6. Should a fire occur, the product may release hazardous substances (gases, fluids, etc.) that can cause health problems. Therefore, suitable measures must be taken, e.g. protective masks and protective clothing must be worn.
- 7. Laser products are given warning labels that are standardized according to their laser class. Lasers can cause biological harm due to the properties of their radiation and due to their extremely concentrated electromagnetic power. If a laser product (e.g. a CD/DVD drive) is integrated into a Rohde & Schwarz product, absolutely no other settings or functions may be used as described in the product documentation. The objective is to prevent personal injury (e.g. due to laser beams).
- 8. EMC classes (in line with EN 55011/CISPR 11, and analogously with EN 55022/CISPR 22, EN 55032/CISPR 32)
 - Class A equipment:
 Equipment suitable for use in all environments except residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings Note: Class A equipment is intended for use in an industrial environment. This equipment may cause radio disturbances in residential environments, due to possible conducted as well as radiated disturbances. In this case, the operator may be required to take appropriate measures to eliminate these disturbances.
 - Class B equipment:
 Equipment suitable for use in residential environments and environments that are directly connected to a low-voltage supply network that supplies residential buildings

Repair and service

1. The product may be opened only by authorized, specially trained personnel. Before any work is performed on the product or before the product is opened, it must be disconnected from the AC supply network. Otherwise, personnel will be exposed to the risk of an electric shock.

2. Adjustments, replacement of parts, maintenance and repair may be performed only by electrical experts authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, protective conductor test, insulation resistance measurement, leakage current measurement, functional test). This helps ensure the continued safety of the product.

Batteries and rechargeable batteries/cells

If the information regarding batteries and rechargeable batteries/cells is not observed either at all or to the extent necessary, product users may be exposed to the risk of explosions, fire and/or serious personal injury, and, in some cases, death. Batteries and rechargeable batteries with alkaline electrolytes (e.g. lithium cells) must be handled in accordance with the EN 62133 standard.

- 1. Cells must not be taken apart or crushed.
- 2. Cells or batteries must not be exposed to heat or fire. Storage in direct sunlight must be avoided. Keep cells and batteries clean and dry. Clean soiled connectors using a dry, clean cloth.
- Cells or batteries must not be short-circuited. Cells or batteries must not be stored in a box or in a
 drawer where they can short-circuit each other, or where they can be short-circuited by other
 conductive materials. Cells and batteries must not be removed from their original packaging until they
 are ready to be used.
- 4. Cells and batteries must not be exposed to any mechanical shocks that are stronger than permitted.
- 5. If a cell develops a leak, the fluid must not be allowed to come into contact with the skin or eyes. If contact occurs, wash the affected area with plenty of water and seek medical aid.
- 6. Improperly replacing or charging cells or batteries that contain alkaline electrolytes (e.g. lithium cells) can cause explosions. Replace cells or batteries only with the matching Rohde & Schwarz type (see parts list) in order to ensure the safety of the product.
- 7. Cells and batteries must be recycled and kept separate from residual waste. Rechargeable batteries and normal batteries that contain lead, mercury or cadmium are hazardous waste. Observe the national regulations regarding waste disposal and recycling.

Transport

- 1. The product may be very heavy. Therefore, the product must be handled with care. In some cases, the user may require a suitable means of lifting or moving the product (e.g. with a lift-truck) to avoid back or other physical injuries.
- 2. Handles on the products are designed exclusively to enable personnel to transport the product. It is therefore not permissible to use handles to fasten the product to or on transport equipment such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport or lifting. Observe the safety regulations of the manufacturer of the means of transport or lifting. Noncompliance can result in personal injury or material damage.
- 3. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely and properly. The manufacturer assumes no responsibility for accidents or collisions. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident.

Waste disposal/Environmental protection

- Specially marked equipment has a battery or accumulator that must not be disposed of with unsorted municipal waste, but must be collected separately. It may only be disposed of at a suitable collection point or via a Rohde & Schwarz customer service center.
- Waste electrical and electronic equipment must not be disposed of with unsorted municipal waste, but must be collected separately.

 Pendo & Schwarz GmbH & Co. KG has developed a disposal concept and takes full responsibility for
 - Rohde & Schwarz GmbH & Co. KG has developed a disposal concept and takes full responsibility for take-back obligations and disposal obligations for manufacturers within the EU. Contact your Rohde & Schwarz customer service center for environmentally responsible disposal of the product.
- 3. If products or their components are mechanically and/or thermally processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.
- 4. If handling the product releases hazardous substances or fuels that must be disposed of in a special way, e.g. coolants or engine oils that must be replenished regularly, the safety instructions of the manufacturer of the hazardous substances or fuels and the applicable regional waste disposal regulations must be observed. Also observe the relevant safety instructions in the product documentation. The improper disposal of hazardous substances or fuels can cause health problems and lead to environmental damage.

For additional information about environmental protection, visit the Rohde & Schwarz website.

Instrucciones de seguridad elementales

¡Es imprescindible leer y cumplir las siguientes instrucciones e informaciones de seguridad!

El principio del grupo de empresas Rohde & Schwarz consiste en tener nuestros productos siempre al día con los estándares de seguridad y de ofrecer a nuestros clientes el máximo grado de seguridad. Nuestros productos y todos los equipos adicionales son siempre fabricados y examinados según las normas de seguridad vigentes. Nuestro sistema de garantía de calidad controla constantemente que sean cumplidas estas normas. El presente producto ha sido fabricado y examinado según el certificado de conformidad de la UE y ha salido de nuestra planta en estado impecable según los estándares técnicos de seguridad. Para poder preservar este estado y garantizar un funcionamiento libre de peligros, el usuario deberá atenerse a todas las indicaciones, informaciones de seguridad y notas de alerta. El grupo de empresas Rohde & Schwarz está siempre a su disposición en caso de que tengan preguntas referentes a estas informaciones de seguridad.

Además queda en la responsabilidad del usuario utilizar el producto en la forma debida. Este producto está destinado exclusivamente al uso en la industria y el laboratorio o, si ha sido expresamente autorizado, para aplicaciones de campo y de ninguna manera deberá ser utilizado de modo que alguna persona/cosa pueda sufrir daño. El uso del producto fuera de sus fines definidos o sin tener en cuenta las instrucciones del fabricante queda en la responsabilidad del usuario. El fabricante no se hace en ninguna forma responsable de consecuencias a causa del mal uso del producto.

Se parte del uso correcto del producto para los fines definidos si el producto es utilizado conforme a las indicaciones de la correspondiente documentación del producto y dentro del margen de rendimiento definido (ver hoja de datos, documentación, informaciones de seguridad que siguen). El uso del producto hace necesarios conocimientos técnicos y ciertos conocimientos del idioma inglés. Por eso se debe tener en cuenta que el producto solo pueda ser operado por personal especializado o personas instruidas en profundidad con las capacidades correspondientes. Si fuera necesaria indumentaria de seguridad para el uso de productos de Rohde & Schwarz, encontraría la información debida en la documentación del producto en el capítulo correspondiente. Guarde bien las informaciones de seguridad elementales, así como la documentación del producto, y entréguelas a usuarios posteriores.

Tener en cuenta las informaciones de seguridad sirve para evitar en lo posible lesiones o daños por peligros de toda clase. Por eso es imprescindible leer detalladamente y comprender por completo las siguientes informaciones de seguridad antes de usar el producto, y respetarlas durante el uso del producto. Deberán tenerse en cuenta todas las demás informaciones de seguridad, como p. ej. las referentes a la protección de personas, que encontrarán en el capítulo correspondiente de la documentación del producto y que también son de obligado cumplimiento. En las presentes informaciones de seguridad se recogen todos los objetos que distribuye el grupo de empresas Rohde & Schwarz bajo la denominación de "producto", entre ellos también aparatos, instalaciones así como toda clase de accesorios. Los datos específicos del producto figuran en la hoja de datos y en la documentación del producto.

Señalización de seguridad de los productos

Las siguientes señales de seguridad se utilizan en los productos para advertir sobre riesgos y peligros.

Símbolo	Significado	Símbolo	Significado
	Aviso: punto de peligro general Observar la documentación del producto	10	Tensión de alimentación de PUESTA EN MARCHA / PARADA
18 kg	Atención en el manejo de dispositivos de peso elevado		Indicación de estado de espera (standby)
A	Peligro de choque eléctrico	===	Corriente continua (DC)
	Advertencia: superficie caliente	~	Corriente alterna (AC)
	Conexión a conductor de protección	∤}	Corriente continua / Corriente alterna (DC/AC)
=	Conexión a tierra		El aparato está protegido en su totalidad por un aislamiento doble (reforzado)
/	Conexión a masa		Distintivo de la UE para baterías y acumuladores Más información en la sección "Eliminación/protección del medio ambiente", punto 1.

Símbolo	Significado	Símbolo	Significado
	Aviso: Cuidado en el manejo de dispositivos sensibles a la electrostática (ESD)		Distintivo de la UE para la eliminación por separado de dispositivos eléctricos y electrónicos Más información en la sección "Eliminación/protección del medio ambiente", punto 2.
	Advertencia: rayo láser Más información en la sección "Funcionamiento", punto 7.		

Palabras de señal y su significado

En la documentación del producto se utilizan las siguientes palabras de señal con el fin de advertir contra riesgos y peligros.

Indica una situación de peligro que, si no se evita, causa lesiones graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar lesiones graves o incluso la muerte.

Indica una situación de peligro que, si no se evita, puede causar lesiones leves o moderadas.

Indica información que se considera importante, pero no en relación con situaciones de peligro; p. ej., avisos sobre posibles daños materiales.

En la documentación del producto se emplea de forma sinónima el término CUIDADO.

Las palabras de señal corresponden a la definición habitual para aplicaciones civiles en el área económica europea. Pueden existir definiciones diferentes a esta definición en otras áreas económicas o en aplicaciones militares. Por eso se deberá tener en cuenta que las palabras de señal aquí descritas sean utilizadas siempre solamente en combinación con la correspondiente documentación del producto y solamente en combinación con el producto correspondiente. La utilización de las palabras de señal en combinación con productos o documentaciones que no les correspondan puede llevar a interpretaciones equivocadas y tener por consecuencia daños en personas u objetos.

Estados operativos y posiciones de funcionamiento

El producto solamente debe ser utilizado según lo indicado por el fabricante respecto a los estados operativos y posiciones de funcionamiento sin que se obstruya la ventilación. Si no se siguen las indicaciones del fabricante, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte. En todos los trabajos deberán ser tenidas en cuenta las normas nacionales y locales de seguridad del trabajo y de prevención de accidentes.

- 1. Si no se convino de otra manera, es para los productos Rohde & Schwarz válido lo que sigue: como posición de funcionamiento se define por principio la posición con el suelo de la caja para abajo, modo de protección IP 2X, uso solamente en estancias interiores, utilización hasta 2000 m sobre el nivel del mar, transporte hasta 4500 m sobre el nivel del mar. Se aplicará una tolerancia de ±10 % sobre el voltaje nominal y de ±5 % sobre la frecuencia nominal. Categoría de sobrecarga eléctrica 2, índice de suciedad 2.
- 2. No sitúe el producto encima de superficies, vehículos, estantes o mesas, que por sus características de peso o de estabilidad no sean aptos para él. Siga siempre las instrucciones de instalación del fabricante cuando instale y asegure el producto en objetos o estructuras (p. ej. paredes y estantes). Si se realiza la instalación de modo distinto al indicado en la documentación del producto, se pueden causar lesiones o, en determinadas circunstancias, incluso la muerte.
- 3. No ponga el producto sobre aparatos que generen calor (p. ej. radiadores o calefactores). La temperatura ambiente no debe superar la temperatura máxima especificada en la documentación del producto o en la hoja de datos. En caso de sobrecalentamiento del producto, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

Seguridad eléctrica

Si no se siguen (o se siguen de modo insuficiente) las indicaciones del fabricante en cuanto a seguridad eléctrica, pueden producirse choques eléctricos, incendios y/o lesiones graves con posible consecuencia de muerte.

- Antes de la puesta en marcha del producto se deberá comprobar siempre que la tensión preseleccionada en el producto coincida con la de la red de alimentación eléctrica. Si es necesario modificar el ajuste de tensión, también se deberán cambiar en caso dado los fusibles correspondientes del producto.
- Los productos de la clase de protección I con alimentación móvil y enchufe individual solamente podrán enchufarse a tomas de corriente con contacto de seguridad y con conductor de protección conectado.
- 3. Queda prohibida la interrupción intencionada del conductor de protección, tanto en la toma de corriente como en el mismo producto. La interrupción puede tener como consecuencia el riesgo de que el producto sea fuente de choques eléctricos. Si se utilizan cables alargadores o regletas de enchufe, deberá garantizarse la realización de un examen regular de los mismos en cuanto a su estado técnico de seguridad.
- 4. Si el producto no está equipado con un interruptor para desconectarlo de la red, o bien si el interruptor existente no resulta apropiado para la desconexión de la red, el enchufe del cable de conexión se deberá considerar como un dispositivo de desconexión.
 El dispositivo de desconexión se debe poder alcanzar fácilmente y debe estar siempre bien accesible. Si, p. ej., el enchufe de conexión a la red es el dispositivo de desconexión, la longitud del cable de conexión no debe superar 3 m).
 Los interruptores selectores o electrónicos no son aptos para el corte de la red eléctrica. Si se integran productos sin interruptor en bastidores o instalaciones, se deberá colocar el interruptor en el nivel de la instalación.
- 5. No utilice nunca el producto si está dañado el cable de conexión a red. Compruebe regularmente el correcto estado de los cables de conexión a red. Asegúrese, mediante las medidas de protección y de instalación adecuadas, de que el cable de conexión a red no pueda ser dañado o de que nadie pueda ser dañado por él, p. ej. al tropezar o por un choque eléctrico.

- Solamente está permitido el funcionamiento en redes de alimentación TN/TT aseguradas con fusibles de 16 A como máximo (utilización de fusibles de mayor amperaje solo previa consulta con el grupo de empresas Rohde & Schwarz).
- 7. Nunca conecte el enchufe en tomas de corriente sucias o llenas de polvo. Introduzca el enchufe por completo y fuertemente en la toma de corriente. La no observación de estas medidas puede provocar chispas, fuego y/o lesiones.
- 8. No sobrecargue las tomas de corriente, los cables alargadores o las regletas de enchufe ya que esto podría causar fuego o choques eléctricos.
- En las mediciones en circuitos de corriente con una tensión U_{eff} > 30 V se deberán tomar las medidas apropiadas para impedir cualquier peligro (p. ej. medios de medición adecuados, seguros, limitación de tensión, corte protector, aislamiento etc.).
- Para la conexión con dispositivos informáticos como un PC o un ordenador industrial, debe comprobarse que éstos cumplan los estándares IEC60950-1/EN60950-1 o IEC61010-1/EN 61010-1 válidos en cada caso.
- 11. A menos que esté permitido expresamente, no retire nunca la tapa ni componentes de la carcasa mientras el producto esté en servicio. Esto pone a descubierto los cables y componentes eléctricos y puede causar lesiones, fuego o daños en el producto.
- 12. Si un producto se instala en un lugar fijo, se deberá primero conectar el conductor de protección fijo con el conductor de protección del producto antes de hacer cualquier otra conexión. La instalación y la conexión deberán ser efectuadas por un electricista especializado.
- 13. En el caso de dispositivos fijos que no estén provistos de fusibles, interruptor automático ni otros mecanismos de seguridad similares, el circuito de alimentación debe estar protegido de modo que todas las personas que puedan acceder al producto, así como el producto mismo, estén a salvo de posibles daños.
- 14. Todo producto debe estar protegido contra sobretensión (debida p. ej. a una caída del rayo) mediante los correspondientes sistemas de protección. Si no, el personal que lo utilice quedará expuesto al peligro de choque eléctrico.
- 15. No debe introducirse en los orificios de la caja del aparato ningún objeto que no esté destinado a ello. Esto puede producir cortocircuitos en el producto y/o puede causar choques eléctricos, fuego o lesiones.
- 16. Salvo indicación contraria, los productos no están impermeabilizados (ver también el capítulo "Estados operativos y posiciones de funcionamiento", punto 1). Por eso es necesario tomar las medidas necesarias para evitar la entrada de líquidos. En caso contrario, existe peligro de choque eléctrico para el usuario o de daños en el producto, que también pueden redundar en peligro para las personas.
- 17. No utilice el producto en condiciones en las que pueda producirse o ya se hayan producido condensaciones sobre el producto o en el interior de éste, como p. ej. al desplazarlo de un lugar frío a otro caliente. La entrada de agua aumenta el riesgo de choque eléctrico.
- 18. Antes de la limpieza, desconecte por completo el producto de la alimentación de tensión (p. ej. red de alimentación o batería). Realice la limpieza de los aparatos con un paño suave, que no se deshilache. No utilice bajo ningún concepto productos de limpieza químicos como alcohol, acetona o diluyentes para lacas nitrocelulósicas.

Funcionamiento

- 1. El uso del producto requiere instrucciones especiales y una alta concentración durante el manejo. Debe asegurarse que las personas que manejen el producto estén a la altura de los requerimientos necesarios en cuanto a aptitudes físicas, psíquicas y emocionales, ya que de otra manera no se pueden excluir lesiones o daños de objetos. El empresario u operador es responsable de seleccionar el personal usuario apto para el manejo del producto.
- 2. Antes de desplazar o transportar el producto, lea y tenga en cuenta el capítulo "Transporte".
- 3. Como con todo producto de fabricación industrial no puede quedar excluida en general la posibilidad de que se produzcan alergias provocadas por algunos materiales empleados —los llamados alérgenos (p. ej. el níquel)—. Si durante el manejo de productos Rohde & Schwarz se producen reacciones alérgicas, como p. ej. irritaciones cutáneas, estornudos continuos, enrojecimiento de la conjuntiva o dificultades respiratorias, debe avisarse inmediatamente a un médico para investigar las causas y evitar cualquier molestia o daño a la salud.
- 4. Antes de la manipulación mecánica y/o térmica o el desmontaje del producto, debe tenerse en cuenta imprescindiblemente el capítulo "Eliminación/protección del medio ambiente", punto 1.
- 5. Ciertos productos, como p. ej. las instalaciones de radiocomunicación RF, pueden a causa de su función natural, emitir una radiación electromagnética aumentada. Deben tomarse todas las medidas necesarias para la protección de las mujeres embarazadas. También las personas con marcapasos pueden correr peligro a causa de la radiación electromagnética. El empresario/operador tiene la obligación de evaluar y señalizar las áreas de trabajo en las que exista un riesgo elevado de exposición a radiaciones.
- 6. Tenga en cuenta que en caso de incendio pueden desprenderse del producto sustancias tóxicas (gases, líquidos etc.) que pueden generar daños a la salud. Por eso, en caso de incendio deben usarse medidas adecuadas, como p. ej. máscaras antigás e indumentaria de protección.
- 7. Los productos con láser están provistos de indicaciones de advertencia normalizadas en función de la clase de láser del que se trate. Los rayos láser pueden provocar daños de tipo biológico a causa de las propiedades de su radiación y debido a su concentración extrema de potencia electromagnética. En caso de que un producto Rohde & Schwarz contenga un producto láser (p. ej. un lector de CD/DVD), no debe usarse ninguna otra configuración o función aparte de las descritas en la documentación del producto, a fin de evitar lesiones (p. ej. debidas a irradiación láser).
- 8. Clases de compatibilidad electromagnética (conforme a EN 55011 / CISPR 11; y en analogía con EN 55022 / CISPR 22, EN 55032 / CISPR 32)
 - Aparato de clase A:
 - Aparato adecuado para su uso en todos los entornos excepto en los residenciales y en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.
 - Nota: Los aparatos de clase A están destinados al uso en entornos industriales. Estos aparatos pueden causar perturbaciones radioeléctricas en entornos residenciales debido a posibles perturbaciones guiadas o radiadas. En este caso, se le podrá solicitar al operador que tome las medidas adecuadas para eliminar estas perturbaciones.
 - Aparato de clase B:
 - Aparato adecuado para su uso en entornos residenciales, así como en aquellos conectados directamente a una red de distribución de baja tensión que suministra corriente a edificios residenciales.

Reparación y mantenimiento

- El producto solamente debe ser abierto por personal especializado con autorización para ello. Antes de manipular el producto o abrirlo, es obligatorio desconectarlo de la tensión de alimentación, para evitar toda posibilidad de choque eléctrico.
- 2. El ajuste, el cambio de partes, el mantenimiento y la reparación deberán ser efectuadas solamente por electricistas autorizados por Rohde & Schwarz. Si se reponen partes con importancia para los aspectos de seguridad (p. ej. el enchufe, los transformadores o los fusibles), solamente podrán ser sustituidos por partes originales. Después de cada cambio de partes relevantes para la seguridad deberá realizarse un control de seguridad (control a primera vista, control del conductor de protección, medición de resistencia de aislamiento, medición de la corriente de fuga, control de funcionamiento). Con esto queda garantizada la seguridad del producto.

Baterías y acumuladores o celdas

Si no se siguen (o se siguen de modo insuficiente) las indicaciones en cuanto a las baterías y acumuladores o celdas, pueden producirse explosiones, incendios y/o lesiones graves con posible consecuencia de muerte. El manejo de baterías y acumuladores con electrolitos alcalinos (p. ej. celdas de litio) debe seguir el estándar EN 62133.

- 1. No deben desmontarse, abrirse ni triturarse las celdas.
- Las celdas o baterías no deben someterse a calor ni fuego. Debe evitarse el almacenamiento a la luz directa del sol. Las celdas y baterías deben mantenerse limpias y secas. Limpiar las conexiones sucias con un paño seco y limpio.
- 3. Las celdas o baterías no deben cortocircuitarse. Es peligroso almacenar las celdas o baterías en estuches o cajones en cuyo interior puedan cortocircuitarse por contacto recíproco o por contacto con otros materiales conductores. No deben extraerse las celdas o baterías de sus embalajes originales hasta el momento en que vayan a utilizarse.
- 4. Las celdas o baterías no deben someterse a impactos mecánicos fuertes indebidos.
- En caso de falta de estanqueidad de una celda, el líquido vertido no debe entrar en contacto con la piel ni los ojos. Si se produce contacto, lavar con agua abundante la zona afectada y avisar a un médico.
- En caso de cambio o recarga inadecuados, las celdas o baterías que contienen electrolitos alcalinos (p. ej. las celdas de litio) pueden explotar. Para garantizar la seguridad del producto, las celdas o baterías solo deben ser sustituidas por el tipo Rohde & Schwarz correspondiente (ver lista de recambios).
- 7. Las baterías y celdas deben reciclarse y no deben tirarse a la basura doméstica. Las baterías o acumuladores que contienen plomo, mercurio o cadmio deben tratarse como residuos especiales. Respete en esta relación las normas nacionales de eliminación y reciclaje.

Transporte

1. El producto puede tener un peso elevado. Por eso es necesario desplazarlo o transportarlo con precaución y, si es necesario, usando un sistema de elevación adecuado (p. ej. una carretilla elevadora), a fin de evitar lesiones en la espalda u otros daños personales.

- 2. Las asas instaladas en los productos sirven solamente de ayuda para el transporte del producto por personas. Por eso no está permitido utilizar las asas para la sujeción en o sobre medios de transporte como p. ej. grúas, carretillas elevadoras de horquilla, carros etc. Es responsabilidad suya fijar los productos de manera segura a los medios de transporte o elevación. Para evitar daños personales o daños en el producto, siga las instrucciones de seguridad del fabricante del medio de transporte o elevación utilizado.
- 3. Si se utiliza el producto dentro de un vehículo, recae de manera exclusiva en el conductor la responsabilidad de conducir el vehículo de manera segura y adecuada. El fabricante no asumirá ninguna responsabilidad por accidentes o colisiones. No utilice nunca el producto dentro de un vehículo en movimiento si esto pudiera distraer al conductor. Asegure el producto dentro del vehículo debidamente para evitar, en caso de un accidente, lesiones u otra clase de daños.

Eliminación/protección del medio ambiente

- Los dispositivos marcados contienen una batería o un acumulador que no se debe desechar con los residuos domésticos sin clasificar, sino que debe ser recogido por separado. La eliminación se debe efectuar exclusivamente a través de un punto de recogida apropiado o del servicio de atención al cliente de Rohde & Schwarz.
- 2. Los dispositivos eléctricos usados no se deben desechar con los residuos domésticos sin clasificar, sino que deben ser recogidos por separado.
 Rohde & Schwarz GmbH & Co.KG ha elaborado un concepto de eliminación de residuos y asume plenamente los deberes de recogida y eliminación para los fabricantes dentro de la UE. Para desechar el producto de manera respetuosa con el medio ambiente, diríjase a su servicio de atención al cliente de Rohde & Schwarz.
- 3. Si se trabaja de manera mecánica y/o térmica cualquier producto o componente más allá del funcionamiento previsto, pueden liberarse sustancias peligrosas (polvos con contenido de metales pesados como p. ej. plomo, berilio o níquel). Por eso el producto solo debe ser desmontado por personal especializado con formación adecuada. Un desmontaje inadecuado puede ocasionar daños para la salud. Se deben tener en cuenta las directivas nacionales referentes a la eliminación de residuos.
- 4. En caso de que durante el trato del producto se formen sustancias peligrosas o combustibles que deban tratarse como residuos especiales (p. ej. refrigerantes o aceites de motor con intervalos de cambio definidos), deben tenerse en cuenta las indicaciones de seguridad del fabricante de dichas sustancias y las normas regionales de eliminación de residuos. Tenga en cuenta también en caso necesario las indicaciones de seguridad especiales contenidas en la documentación del producto. La eliminación incorrecta de sustancias peligrosas o combustibles puede causar daños a la salud o daños al medio ambiente.

Se puede encontrar más información sobre la protección del medio ambiente en la página web de Rohde & Schwarz.

Quality management and environmental management

 $\begin{array}{c} \text{Certified Quality System} \\ \textbf{ISO 9001} \end{array}$

Certified Environmental System

ISO 14001

Sehr geehrter Kunde,

Sie haben sich für den Kauf eines Rohde & Schwarz Produktes entschieden. Sie erhalten damit ein nach modernsten Fertigungsmethoden hergestelltes Produkt. Es wurde nach den Regeln unserer Qualitäts- und Umweltmanagementsysteme entwickelt, gefertigt und geprüft. Rohde & Schwarz ist unter anderem nach den Managementsystemen ISO 9001 und ISO 14001 zertifiziert.

Der Umwelt verpflichtet

- Energie-effiziente,
 RoHS-konforme Produkte
- Kontinuierliche
 Weiterentwicklung nachhaltiger
 Umweltkonzepte
- ISO 14001-zertifiziertes Umweltmanagementsystem

Dear customer,

You have decided to buy a Rohde & Schwarz product. This product has been manufactured using the most advanced methods. It was developed, manufactured and tested in compliance with our quality management and environmental management systems. Rohde & Schwarz has been certified, for example, according to the ISO 9001 and ISO 14001 management systems.

Environmental commitment

- Energy-efficient products
- Continuous improvement in environmental sustainability
- ISO 14001-certified environmental management system

Cher client,

Vous avez choisi d'acheter un produit Rohde & Schwarz. Vous disposez donc d'un produit fabriqué d'après les méthodes les plus avancées. Le développement, la fabrication et les tests de ce produit ont été effectués selon nos systèmes de management de qualité et de management environnemental. La société Rohde & Schwarz a été homologuée, entre autres, conformément aux systèmes de management ISO 9001 et ISO 14001.

Engagement écologique

- Produits à efficience énergétique
- Amélioration continue de la durabilité environnementale
- Système de management environnemental certifié selon ISO 14001

Customer Support

Technical support - where and when you need it

For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support Centers. A team of highly qualified engineers provides telephone support and will work with you to find a solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz equipment.

Up-to-date information and upgrades

To keep your instrument up-to-date and to be informed about new application notes related to your instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish. We will take care that you will get the right information.

Europe, Africa, Middle East Phone +49 89 4129 12345

customersupport@rohde-schwarz.com

North America Phone 1-888-TEST-RSA (1-888-837-8772)

customer.support@rsa.rohde-schwarz.com

Latin America Phone +1-410-910-7988

customersupport.la@rohde-schwarz.com

Asia/Pacific Phone +65 65 13 04 88

customersupport.asia@rohde-schwarz.com

China Phone +86-800-810-8228 /

+86-400-650-5896

customersupport.china@rohde-schwarz.com

Contents

1	Preface	. 13
1.1	Documentation Overview	13
1.2	Typographical Conventions	14
1.3	Notes on Screenshots	14
2	Preparing for Use	. 17
2.1	Front Panel Tour	. 17
2.1.1	Utility Keys	. 17
2.1.2	Standby LEDs and Standby Key	18
2.1.3	Display	. 19
2.1.4	Setup Keys	19
2.1.4.1	Keys for Setting Parameters	19
2.1.4.2	Display Keys	. 20
2.1.5	Keypad for data entry	21
2.1.6	Rotary Knob and Navigation Keys	22
2.1.7	Front Panel Connectors	23
2.2	Rear Panel Tour	25
2.2.1	Description of the Connectors.	25
2.3	Putting into Operation	28
2.3.1	EMI Suppression	30
2.3.2	Unpacking and Checking the Instrument	30
2.3.3	Placing or Mounting the Instrument	. 30
2.3.4	Connecting the Instrument to the AC Supply	32
2.3.5	Starting the Instrument	32
2.3.5.1	Standby and Ready state	33
2.3.5.2	Start Display and Booting	33
2.3.5.3	Function Check	33
2.3.5.4	Default Settings	34
2.3.6	Shutting Down the Instrument	35
2.3.7	Power Fuses	35
2.4	Connecting External Accessories	36
2.4.1	Connecting USB Devices	36

2.5	Linux Operating System	37
2.6	Setting Up a Network (LAN) Connection	38
2.6.1	Connecting the Instrument to the Network	39
2.6.2	Assigning the IP Address	40
2.6.3	Using Computer Names	41
2.7	Remote Access via an External Controller	41
2.7.1	Using a Web Browser for Remote Access	43
2.7.2	Remote Access via a VNC Client Software	44
2.8	LXI Configuration	49
2.8.1	LXI Browser Settings	51
2.8.2	LAN Configuration	52
2.8.2.1	IP Configuration	52
2.8.2.2	Advanced LAN Configuration	53
2.8.2.3	Ping Client	54
2.8.2.4	Web Control	55
2.8.2.5	SCPI Remote Trace	57
3	Getting Started	59
3.1	Brief Introduction to the Instrument's Concept	59
3.2	Application Field of the Instrument	61
3.3	Description of Individual Diagram Blocks	62
3.4	Example of Setup	64
4	Manual Operation	73
4.1	Key Features	73
4.2	Display	77
4.2.1	Settings Displayed in the Header Section	77
4.2.2	Status Information and Messages	78
4.2.2.1	Status Information	78
4.2.2.2	Messages	78
4.2.2.3	Volatile messages	78
4.2.2.4	Permanent Messages	79
4.2.3	Info Window	79
4.2.4	Block Diagram	80
1011	Function Blocks in the Block Diagram	81

4.2.4.2	Signal Flow and Input/Output Symbols in the Block Diagram	81
4.2.5	Structure of the Dialogs	81
4.3	Accessing Dialogs	82
4.4	Setting Parameters	83
4.4.1	Working with the Cursor	84
4.4.2	Selecting a Control Element	85
4.4.3	Switching Parameters On/Off	85
4.4.4	Entering a Value	86
4.4.5	Working with Units	87
4.4.6	Selecting a Value from a List	88
4.4.7	Terminating Entries with Confirmation	88
4.4.8	Restoring the Previous Value	89
4.5	Editors	90
4.5.1	Working with List Editor	90
4.6	How to Use the Help System	92
4.7	File Management	93
4.7.1	File Select Dialog	95
4.7.2	File Manager	96
4.7.2.1	Extensions for User Files	97
4.8	Legend of Front-Panel Controls	97
4.8.1	Front Panel Key Emulation	99
5	Instrument Function	101
5.1	Overview of Instrument Functions	101
5.2	General Instrument Settings	103
5.2.1	Overview of General Instrument Settings	103
5.2.2	Default Instrument Settings - Preset Key	103
5.2.3	General Configuration of Instrument - Setup Key	104
5.2.3.1	Internal Adjustments	104
5.2.3.2	Hardware Config	107
5.2.3.3	Software / Options	108
5.2.3.4	Manage License Keys	109
5.2.3.5	NRP-Z Info/Update	110
5236	SMZ Info Undate	112

5.2.3.7	Update	113
5.2.3.8	Display Update	113
5.2.3.9	Check Front Panel	114
5.2.3.10	Shutting Down and Rebooting the Instrument	116
5.2.3.11	Date and Time	116
5.2.3.12	Network Settings	117
5.2.3.13	Display/Keyboard Settings	120
5.2.3.14	Auxiliary I/O Settings	121
5.2.3.15	Remote Channel Settings.	123
5.2.3.16	Instrument Emulations	124
5.2.3.17	LXI Status	126
5.2.3.18	Protection	127
5.2.3.19	Security	128
5.2.3.20	Save/Recall	134
5.2.3.21	Factory Preset	134
5.2.3.22	Help	135
5.2.4	Switching to Manual Control - Local Key	135
5.2.5	Generating a Hard Copy of the Display	136
5.2.5.1	Hard Copy Settings	137
5.2.5.2	Hardcopy Options	138
5.2.6	Messages - Info Key	139
5.2.7	Help System - Help Key	139
5.2.8	Storing and Loading Instrument Data - File Key	141
5.2.8.1	Save/Recall Menu	142
5.2.8.2	Storing Instrument Settings	142
5.2.8.3	Loading Instrument Settings	143
5.2.8.4	File Manager	145
5.2.8.5	Accessing the File System of the Instrument and Transferring Files from and to the Instrument	
5.3	RF Frequency Block	149
5.3.1	Overview of RF Signal	149
5.3.1.1	RF Output	149
5.3.1.2	RF Signal Modes and Characteristics	150
5.3.2	RF Frequency	151

5.3.2.1	RF Frequency vs. RF Output Frequency	151
5.3.2.2	Setting the RF Frequency	152
5.3.2.3	RF Frequency Dialog	152
5.3.2.4	Frequency Settings	153
5.3.2.5	User Variation Settings	154
5.3.2.6	The Configurable Main PLL Bandwidth	155
5.3.3	Phase	157
5.3.3.1	Phase Settings	157
5.3.4	Reference Oscillator	157
5.3.4.1	Reference Oscillator Settings	159
5.3.5	RF Frequency Sweep	161
5.3.5.1	Overview	161
5.3.5.2	RF Frequency Sweep	163
5.3.6	List Mode	172
5.3.6.1	List Mode Dialog	173
5.3.6.2	Filling the List Mode Data automatically	180
5.4	RF Level	181
5.4.1	Overview of RF Level	181
5.4.1.1	RF level vs. RF output level	182
5.4.1.2	Setting the RF level	182
5.4.2	RF Level Dialog	183
5.4.2.1	Level Settings	183
5.4.2.2	User Variation	185
5.4.2.3	External Level Adjustment	185
5.4.3	Power-On/EMF Settings	185
5.4.4	RF Level Sweep	186
5.4.4.1	RF Level Sweep Settings	186
5.4.4.2	RF Level Marker	192
5.4.5	Automatic Level Control - ALC	194
5.4.5.1	Automatic Level Control Settings	195
5.4.5.2	External Level Control	196
5.4.6	Power Sensors	197
5461	NRP-7 Power Viewer	198

5.4.6.2	NRP-Z Level Control	205
5.4.6.3	NRP-Z Power Analysis	209
5.4.7	User Correction	247
5.4.7.1	User Correction Menu	248
5.4.7.2	Filling the Correction List automatically	252
5.4.7.3	Filling the Correction List with Power Sensor Measurement Data	253
5.5	Modulation	255
5.5.1	Overview of Modulation	255
5.5.1.1	Enabling/Disabling Analog Modulations using the MOD On/Off Key	256
5.5.1.2	Modulation Sources	256
5.5.2	Amplitude Modulation (AM)	259
5.5.2.1	Amplitude Modulation Settings	259
5.5.3	Frequency Modulation (FM)	261
5.5.3.1	Frequency Modulation Settings	261
5.5.4	Phase Modulation (PhiM)	264
5.5.4.1	Phase Modulation Dialog	264
5.5.5	Digital Modulation	267
5.5.5.1	Digital Modulation Menu	267
5.5.6	Pulse Modulation (PM)	269
5.5.6.1	Pulse Modulation Settings	269
5.5.7	Chirp Modulation	272
5.5.7.1	Chirp Modulation Settings	273
5.6	Modulation Generator, Pulse Generator and LF Output	276
5.6.1	LF Gen./Noise	276
5.6.1.1	LF Generator Settings	277
5.6.1.2	Noise Settings	279
5.6.1.3	LF Frequency Sweep	280
5.6.1.4	LF Frequency Marker Settings	286
5.6.2	LF Output	288
5.6.2.1	LF Output Settings	288
5.6.2.2	LF Level Sweep	290
5.6.2.3	LF Level Marker Settings	296
563	Pulse Generator	297

5.6.3.1	Pulse Generator Settings	297
5.6.3.2	Pulse Train Generation	301
5.7	Attenuator	305
5.7.1	Attenuator Settings	306
5.8	R&S SMZ Frequency Multiplier	307
6	Remote Control Basics	309
6.1	Remote Control Interfaces and Protocols	309
6.1.1	VISA Libraries	310
6.1.2	Messages	310
6.1.3	LAN Interface	311
6.1.3.1	HiSLIP Protocol	313
6.1.3.2	VXI-11 Protocol	313
6.1.3.3	Socket Communication	313
6.1.3.4	LAN Interface Messages	314
6.1.4	USB Interface	314
6.1.5	Serial Interface	315
6.1.6	GPIB Interface (IEC/IEEE Bus Interface)	316
6.1.6.1	GPIB Interface Messages	316
6.1.6.2	GPIB Instrument Address	317
6.2	Starting a Remote Control Session	318
6.2.1	Switching to Remote Control	318
6.2.2	Returning to Manual Operation	319
6.2.3	Examples	319
6.2.3.1	Remote Control over GPIB	320
6.2.3.2	Remote Control over LAN using VXI-11 Protocol	320
6.2.3.3	Remote Control over LAN using Socket Communication	325
6.3	SCPI Command Structure	332
6.3.1	Syntax for Common Commands	332
6.3.2	Syntax for Device-Specific Commands	333
6.3.3	SCPI Parameters	335
6.3.4	Overview of Syntax Elements	338
6.3.5	Structure of a command line	338
636	Responses to Queries	339

6.4	Command Sequence and Synchronization	340
6.4.1	Preventing Overlapping Execution	341
6.5	Status Reporting System	343
6.5.1	Hierarchy of the Status Registers	343
6.5.2	Structure of a SCPI Status Register	345
6.5.3	Status Byte (STB) and Service Request Enable Register (SRE)	347
6.5.4	Event Status Register (ESR) and Event Status Enable Register (ESE)	348
6.5.5	Questionable Status Register (STATus:QUEStionable)	348
6.5.6	Operation Status Register (STATus:OPERation)	349
6.5.7	Application of the Status Reporting System	349
6.5.7.1	Service Request	349
6.5.7.2	Serial Poll	350
6.5.7.3	Query of an instrument status.	350
6.5.7.4	Error Queue	350
6.5.8	Reset Values of the Status Reporting System	351
6.6	General Programming Recommendations	351
7	Remote Control Commands	353
7.1	Conventions used in SCPI Command Descriptions	353
7.2	Common Commands	353
7.3	Preset Commands	358
7.4	CALibration Subsystem	360
7.5	DIAGnostic Subsystem	362
7.6	DISPlay Subsystem	364
7.7	FORMat Subsystem	367
7.8	HCOPy Subsystem	369
7.9	KBOard Subsystem	376
7.10	MMEMory Subsystem	377
7.10.1	File Naming Conventions	377
7.10.2	Extensions for User Files	378
7.10.3	Examples	378
7.10.4	Remote Control Commands	380
7.11	OUTPut Subsystem	386
7 12	Power Sensor Measurement Subsystems	380

7.12.1	CALCulate Subsystem	390
7.12.2	DISPlay Subsystem	395
7.12.3	INITiate Command	395
7.12.4	READ Subsystem	396
7.12.5	SENSe Subsystem	396
7.12.6	TRACe Subsystem	439
7.13	SOURce Subsystem	449
7.13.1	SOURce:AM Subsystem	450
7.13.2	SOURce:CHIRp Subsystem	452
7.13.3	SOURce:CORRection Subsystem	457
7.13.4	SOURce:DM Subsystem	466
7.13.5	SOURce:FM Subsystem	470
7.13.6	SOURce:FREQuency Subsystem	472
7.13.7	SOURce:INPut Subsystem	480
7.13.8	SOURce:LFOutput Subsystem	481
7.13.9	SOURce:LIST Subsystem	507
7.13.10	SOURce:MODulation Subsystem	520
7.13.11	SOURce:NOISe Subsystem	520
7.13.12	SOURce:PGEN Subsystem	522
7.13.13	SOURce:PHASe Subsystem	523
7.13.14	SOURce:PM Subsystem	524
7.13.15	SOURce:POWer Subsystem	526
7.13.16	SOURce:PULM Subsystem	537
7.13.17	SOURce:ROSCillator Subsystem	555
7.13.18	SOURce:SWEep Subsystem	559
7.14	STATus Subsystem	574
7.15	SYSTem Subsystem	578
7.16	TEST Subsystem	593
7.17	TRIGger Subsystem	594
7.18	UNIT Subsystem	601
8	Maintenance	603
8.1	Storing and Packing	
0	Status Information, Error Messages and Troubleshooting	
9	Status Information. Effor Wessages and Troubleshooting	ฮมว

9.1	Status Information	605
9.1.1	Status information displayed between the frequency and level fields	605
9.1.2	Status information displayed to the left of the Info line	606
9.1.3	Status information displayed in the Info line	607
9.2	Error Messages	608
9.2.1	Volatile messages	608
9.2.2	Permanent messages	609
9.3	SCPI-Error Messages	609
9.4	Device-Specific Error Messages	609
9.5	Resolving Network Connection Failures	611
9.6	Obtaining Technical Support	612
	Annex	613
Α	Hardware Interfaces	613
A.1	GPIB Bus Interface	613
	List of Commands	615
	Index	

Documentation Overview

1 Preface

1.1 Documentation Overview

The user documentation for the R&S SMF consists of the following parts:

- Quick start guide, printed manual
- Online help system on the instrument
- Operating manual and online manual provided on the product page
- Service manual provided on the internet for registered users
- Instrument security procedures provided on the product page
- Release notes provided on the product page
- Data sheet and brochures provided on the product page
- Application notes provided on the Rohde & Schwarz website

You find the user documentation on the R&S SMF product page mainly at: http://www.rohde-schwarz.com/product/SMF100A.html > "Downloads" > "Manuals" Additional download paths are stated directly in the following abstracts of the documentation types.

Quick Start Guide

Introduces the R&S SMF and describes how to set up and start working with the product. Includes basic operations, typical measurement examples, and general information, e.g. safety instructions, etc.

Online Help

Offers quick, context-sensitive access to the information needed for operation and programming.

Operating Manual and Online Manual

Contains the description of the graphical user interface, an introduction to remote control, the description of all SCPI remote control commands, programming examples, and information on maintenance, instrument interfaces and error messages. Includes the contents of the quick start guide manual.

The **online manual** provides the contents of the operating manual for immediate display on the internet.

Service Manual

Describes the performance test for checking the rated specifications, module replacement and repair, firmware update, troubleshooting and fault elimination, and contains mechanical drawings and spare part lists.

Notes on Screenshots

The service manual is available for registered users on the global Rohde & Schwarz information system (GLORIS).

Instrument Security Procedures

Deals with security issues when working with the R&S SMF in secure areas.

Data Sheet and Brochures

The data sheet contains the technical specifications of the R&S SMF. Brochures provide an overview of the instrument and deal with the specific characteristics, see http://www.rohde-schwarz.com/product/SMF100A.html "Download" > "Brochures and Data Sheets".

Release Notes

Describes the firmware installation, new and modified features and fixed issues according to the current firmware version. You find the latest version at:

http://www.rohde-schwarz.com/product/SMF100A.html > "Downloads" > "Firmware"

Application Notes, Application Cards, White Papers, etc.

These documents deal with special applications or background information on particular topics, see http://www.rohde-schwarz.com/appnotes.

1.2 Typographical Conventions

The following text markers are used throughout this documentation:

Convention	Description
"Graphical user interface elements"	All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks.
KEYS	Key names are written in capital letters.
File names, commands, program code	File names, commands, coding samples and screen output are distinguished by their font.
Input	Input to be entered by the user is displayed in italics.
Links	Links that you can click are displayed in blue font.
"References"	References to other parts of the documentation are enclosed by quotation marks.

1.3 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as much as possible of the provided functions and

Notes on Screenshots

possible interdependencies between parameters. The shown values may not represent realistic test situations.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

Notes on Screenshots

Front Panel Tour

2 Preparing for Use

The following topics will help you to get familiar with the instrument and perform the first steps:

- Front Panel Tour
- Rear Panel Tour
- Putting into Operation

This section explains the control elements and connectors of the Signal Generator R&S SMF with the aid of the front and rear views and describes how to put the instrument into operation. It also describes the connection of peripherals such as printer, keyboard or mouse. Specifications of interfaces can be found in the data sheet.

The Chapter 3, "Getting Started", on page 59 of this manual provides an overview of the generator functions and introduces the operating concept. Detailed operating instructions and an overview of menus follow in Chapter 4, "Manual Operation", on page 73.

For all reference information concerning manual and remote control of the instrument refer to the online help system or its printed/printable version. A more detailed description of the hardware connectors and interfaces is also part of the help system.

2.1 Front Panel Tour

The front panel of the R&S SMF consists of the VGA display, some utility keys (left side) and the hardkey area with connectors and control interfaces (right side). The subsequent sections provide brief explanations on the controls and connectors, the hardkey area and the front panel.

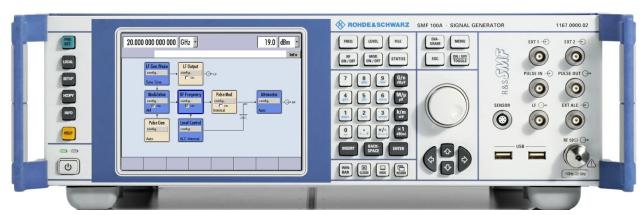


Figure 2-1: Front panel view

2.1.1 Utility Keys

For more information refer to chapter "Instrument Settings".

Front Panel Tour

The keys to the left of the display cause the R&S SMF to return to a definite instrument state and provide information on the instrument and assistance.

PRESET

Sets the instrument to a defined state (see Chapter 2.3.5.4, "Default Settings", on page 34).

LOCAL

Switches from remote control to local (manual) control.

SETUP

Opens the "Setup" dialog for configuring presettings.

For more information, see Chapter 5.2.3, "General Configuration of Instrument - Setup Key", on page 104.

HCOPY

Opens the "Hardcopy" menu for configuring and starting printing.

For more information, see Chapter 5.2.5, "Generating a Hard Copy of the Display", on page 136.

INFO

Displays status messages, error messages and warnings.

HELP

Displays context-sensitive help text.

2.1.2 Standby LEDs and Standby Key

The standby LEDs and the ON/STANDBY key are located in the bottom left corner of the front panel.

The ON/STANDBY key toggles the instrument between standby and ready state (indicated by the standby LEDs).

The standby LEDs indicate the instrument states as follow:

- the green LED (left) is on when the instrument is ready for operation,
- the yellow LED (right) is on in the standby mode.

Front Panel Tour

See also Chapter 2.3.5.1, "Standby and Ready state", on page 33.

2.1.3 Display

The display clearly shows all main settings and signal generator states.

The display is divided into the following sections:

- Frequency and level display with info line
 - Frequency and level settings containing offset.
 - Status messages
 - Brief error messages.
 To access an window with detailed information for a message, use the INFO key.

Block diagram

The block diagram shows the current configuration and the signal flow in the generator with the aid of function blocks containing an on/off switch. Selecting a function block opens a list of associated setting menus. Active menus, info windows and graphs are displayed on top of the block diagram. The block diagram can be displayed in the foreground anytime with the DIAGRAM key.

"Winbar" at the bottom of the display
 Open menus are indicated by a labelled button in the "Winbar". When a button is
 pressed, the associated menu is displayed either in the foreground or minimized in
 the "Winbar".

Pressing the WINBAR key to access the "Windbar".

For detailed information, see Chapter 4.2, "Display", on page 77.

2.1.4 Setup Keys

The keys to the right of the display set parameters, select views and control the windows.

2.1.4.1 Keys for Setting Parameters

These keys provide direct access to the settings in the header of the instrument and can be used for fast changing the state of the modulation and the RF signal.

For more information refer to chapter "Instrument Functions".

FREQ

Activates frequency entry.

Front Panel Tour

RF ON/OFF

Switches the RF signal on and off.

"RF OFF" is displayed in the header next to the "Frequency" field.

LEVEL

Activates level entry.

MOD ON/OFF

Switches the modulations on and off.

"MOD OFF" is displayed in the info line of the header next to the "Level" field.

FILE

Activates the menu for storing or loading files (see Chapter 4.7, "File Management", on page 93).

STATUS

Indicates the instrument status.

2.1.4.2 Display Keys

These keys arrange different windows on the display, and turn the RF signal and modulation on and off.

DIAGRAM

Brings the block diagram to the foreground. Active menus are minimized.

Active menus are indicated by the buttons in the "Winbar".

ESC

The function of this key depends on the current cursor position.

- Calls the next higher selection level.
- Closes the open window without accepting new entries; the old value or parameter is retained.
- In dialog boxes that contain a "Cancel" button it activates that button.
- Closes all kinds of dialog boxes, if the edit mode is not active.
- Quits the edit mode, if the edit mode is active.
- Switches between different entry fields of a menu.
- Shifts the entry cursor from the header display to the previously active menu, or to the previously highlighted block in the block diagram if no menu is active.

TOGGLE

- Switches highlighted elements or a function block on and off.
- Switches between two or more settings, e.g. items of selection lists. At the end of a list, the cursor is set on the first entry again.

MENU

Calls the menu tree.

Front Panel Tour

WINBAR

Toggles between display and blanking of the "Winbar".

CLOSE

Closes the active menu.

- If the entry mode is active, changes are cancelled.
- If settings in this menu require acknowledgment by means of an "Accept" button, a query is displayed asking whether the changes made should be cancelled.

HIDE

Minimizes the active open menu. The associated button in the "Winbar" remains visible.

REARR

Automatic rearrangement of open menus.

2.1.5 Keypad for data entry

The keys in the data entry keypad are used to enter alphanumeric data and units.

Data entry keys are only enabled while the cursor is placed on a data input field in a dialog. Their function depends on the data type of the input field.

Keys	Description
09/abc	Enters the corresponding numbers (in numeric input fields) or characters (character input fields).
	Inserts a decimal point (numeric input fields) or dot (character input fields) at the cursor position. Multiple decimal points are not allowed.
+/-	Changes the sign of a numeric parameter. In the case of an alphanumeric parameter, inserts a hyphen at the cursor position.
Unit keys	Selects a unit and thus determine the absolute value, or changes the unit, i.e. trigger a recalculation without changing the absolute value. The function depends on the time at which the UNIT key is used during parameter entry (see Chapter 4.4.5, "Working with Units ", on page 87).
	For unit-free values, the X1 key is equivalent to ENTER. It confirms the previous entry and deactivates the input field.
_	Adds a blank in a character input field.

Front Panel Tour

Keys	Description
*#	Enters special characters. Toggles through the available characters if the key is pressed several times in a row.
A <-> a	Toggles between uppercase and lowercase characters.
A, B, C, D, E, F	Enters hexadecimal values. The letters assigned to the keys are automatically active when an entry field with a hexadecimal value is active.

INSERT

Toggles between insert and overwrite mode (see also Chapter 4.4.4, "Entering a Value", on page 86).

BACKSPACE

Deletes the last character before the cursor position or the selected character sequence.

ENTER

Pressing the rotary knob has the same effect.

- Concludes the entry of dimensionless entries. For other entries, this key can be used instead of the default unit key. The new value is accepted.
- Confirms ("OK") and closes open input windows.
- In a dialog box, selects the default or focused button.
- In a dialog box, activates the edit mode for the focused area, if available.
- In a dialog box, activates or deactivates the selected option of the focused area, if the edit mode is active.
- Calls the next menu level.

2.1.6 Rotary Knob and Navigation Keys

The rotary knob and the arrow keys are alternative control elements for data variation and navigation in the graphical user interface.

ROTARY KNOB

The rotary knob has several functions:

- Increases (clockwise direction) or decreases (counter-clockwise direction) numeric values at a defined step width in editing mode
- Moves the cursor, e.g. to a function block in the block diagram
- Scrolls within lists, tables or tree views
- Acts like the ENTER key, when it is pressed.
- Shifts the selection bar within focused areas (e.g. lists), if the edit mode is activated

Note: Turning or pressing the rotary knob is equivalent to pressing the UP and DOWN keys or the ENTER key in the keypad.

Front Panel Tour

NAVIGATION KEYS

The navigation keys consist of 4 arrow keys which are used for navigation, alternatively to the rotary knob.

UP/ DOWN KEYS The up and down arrow keys do the following:

- In a numeric edit dialog box, increase or decrease the instrument parameter.
- In a list, table, window or dialog box, scroll vertically.

LEFT/ RIGHT KEYS The left and right arrow keys do the following:

- In an alphanumeric edit dialog box, move the cursor forward and back.
- In a list, table, window or dialog box, scroll horizontally.

2.1.7 Front Panel Connectors

The RF and LF connectors and various additional interface connectors are located on the front panel.

SENSOR

Connector for R&S NRP-Zxx sensors.

With the aid of the "User Correction" function, a table with correction values for external test assemblies can be automatically determined, e.g. for compensating the frequency response of cables.

The power sensors are connected by inserting the male connector. To disconnect hold the connector by its sleeve. Pulling on the sensor cable will not release the sensor connector.

See also Chapter 5.4.6.1, "NRP-Z Power Viewer", on page 198.

LF

Output for internal LF Generator and monitoring signal (option R&S SMF-B20).

See also data sheet, Chapter 5.6.1, "LF Gen./Noise", on page 276 and Chapter 5.6.2, "LF Output", on page 288.

EXT 1 | EXT 2

Inputs for external modulation signals for AM, FM, Phase Modulation, ASK, FSK, and PSK (option R&S SMF-B20).

PULSE IN, PULSE OUT

Input/output for pulse generation

Front Panel Tour

PULSE IN Input of external pulse signal or input for triggering the pulse genera-

tor (option R&S SMF-K23).

PULSE OUT Output of internal pulse signal generated by the internal pulse gener-

ator (option R&S SMF-K23).

EXT ALC

Input for detection voltage of an external level detector.

RF

Outputs for RF signal.

NOTICE! Maximum Input Levels. Do not overload the RF output. The maximum permissible back-feed is specified in the data sheet.

The connector type depends on the installed frequency option, see Table 2-1.

Table 2-1: Overview of RF connector types depending on the frequency range

RF option	available connector types
R&S SMF-B122	test port adapters N female/male test port adapters 3.5 mm female/male
R&S SMF-B131 R&S SMF-B144/-B144N	test port adapters N female/male test port adapters 2.92 mm female/male test port adapter 2.4 mm female

NOTICE! Risk of RF connector and cable damage. Excessive tightening of the connectors can damage the cables and connectors. Too weak tightening leads to inaccurate results.

Always use an appropriate torque wrench suitable for this type of connector and apply the torque specified in the application note 1MA99.

If your instrument is equipped with a test port adapter, refer also to 1MA100.

The application notes are available on the Internet and provide additional information on care and handling of RF connectors.

Rohde & Schwarz offers appropriate torque wrenches for various connectors. For ordering information see the R&S SMF data sheet or product brochure.

USB

USB (universal serial bus) interfaces of type A (host USB).

- Connection of peripherals such as mouse or keyboard
- Connection of memory stick for file transmission
- Firmware update

Note: Optionally, another USB interface type A (host) and a USB interface type B (device, for remote control) are available on the rear panel (option R&S SMF-B84).

See also Chapter 2.4.1, "Connecting USB Devices", on page 36.

Rear Panel Tour

2.2 Rear Panel Tour

This section gives an overview of connectors on the rear panel of the instrument. Each connector is briefly described and a reference is given to the chapters containing detailed information. For technical data of the connectors refer to the data sheet.

Figure 2-2: Rear panel view

2.2.1 Description of the Connectors

EXT 1 | EXT 2

Inputs for external modulation signals for AM, FM, Phase Modulation, ASK, FSK, and PSK (option R&S SMF-B20).

The rear panel inputs are available only with option R&S SMF-B81.

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

VIDEO

Output of the external or internal pulse modulation signal (video signal).

SENSOR

Rear panel connector for R&S NRP-Zxx power sensors.

AUX I/O

Interface for direct control of additional external devices.

LAN CONNECTOR

Ethernet interface

- For integrating signal generators in a network
- Remote control of signal generator
- Remote access to the signal generator

Rear Panel Tour

Firmware update

See also:

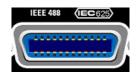
- Chapter 2.6, "Setting Up a Network (LAN) Connection", on page 38
- Chapter 6.1.3, "LAN Interface", on page 311

USB A, USB B

Universal serial bus interfaces available only with option R&S SMF-B84.

Note: With respect to security concerns, you can alternatively equip your instrument in this slot with a removable CompactFlashTM Card, option R&S SMF-B85. This option is available for instruments with serial number higher than 104000.

Further information concerning security of storage media is given in the document Instrument Security Procedures for the R&S SMF on the R&S website of the instrument.


USB B Universal serial bus interface of type B (device USB)

Remote control of signal generator

USB A USB (universal serial bus) interfaces of type A (host).

- Connection of peripherals such as mouse and keyboard
- Connection of memory stick for file transmission

Two further USB interfaces of type A are available on the front panel. See also Chapter 2.4.1, "Connecting USB Devices", on page 36.

IEC 625/IEEE 488

IEC-bus (IEEE 488) interface for remote control of the instrument.

The GPIB interface is available only with option R&S SMF-B83.

Note: With respect to security concerns, you can alternatively equip your instrument in this slot with a removable CompactFlashTM Card, option R&S SMF-B85. This option is available for instruments with serial number higher than 104000.

Further information concerning security of storage media is given in the document Instrument Security Procedures for the R&S SMF on the R&S website of the instrument.

See also Chapter A.1, "GPIB Bus Interface", on page 613 and Chapter 6.1.6, "GPIB Interface (IEC/IEEE Bus Interface)", on page 316.

Note: In order to avoid electromagnetic interference (EMI) caused by open lines, always terminate any connected IEC-bus cable with an instrument or a controller.

AC SUPPLY AND POWER SWITCH

When the R&S SMF is connected to the AC supply, it automatically sets itself to the correct range for the applied voltage (range: see type label). There is no need to set the voltage manually or change fuses.

The power switch can be set to two positions:

• (

The instrument is disconnected from the mains.

•

The instrument is power-supplied. It is either ready for operation (STANDBY) or in operating mode, depending on the position of the ON/STANDBY switch on the instrument front.

Rear Panel Tour

See also data sheet and Chapter 2.3.4, "Connecting the Instrument to the AC Supply", on page 32.

RF OUT

Rear panel output for RF signal (option R&S SMF-B81).

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

NOTICE! Maximum Input Levels. Do not overload the RF output. The maximum permisssible reverse power is specified in the data sheet.

FFC

Input for external EFC signal (external frequency control).

REF IN

Input for external reference signal.

See also Chapter 5.3.4, "Reference Oscillator", on page 157.

REF OUT

Output of internal reference signal.

It can be adjusted whether the internal or the external signal is to be output.

See also Chapter 5.3.4, "Reference Oscillator", on page 157.

MARKER

Output for user-programmable marker signal used for brightness control of an oscilloscope. This output becomes active when the sweep run has reached the marker.

BLANK

Output for triggering and blanking an oscilloscope or for PEN LIFT control of an XY recorder.

TRIGGER

Input for triggering the sweep in the "Extern Single" and "Extern Step" modes.

STOP

Input and output for stopping the sweep in all modes.

This connector is bidirectional:

- Used as an input, the sweep can be stopped by an external network analyzer.
- Used as an output, the generator can stop the sweep of an external network analyzer.

V/GHZ

Output for supplying a voltage which is proportional to the frequency.

Putting into Operation

USER 1 | USER 2 | USER 3

Input/output for configurable signals for triggering and control.

X-AXIS

Output for supplying a voltage ramp for the X deflection of an oscilloscope or an XY recorder.

Z-AXIS

Output for supplying a voltage pulse for the combined blanking and marker generation for network analyzers.

PULSE IN

Input of external pulse signal or input for triggering the pulse generator (option R&S SMF-K23).

The connector at the rear panel is available only with option R&S SMF-B81.

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

PULSE OUT

Output of internal pulse signal generated by the internal pulse generator (option R&S SMF-K23).

The connector at the rear panel is available only with option R&S SMF-B81.

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

SYNC

Output for internal SYNC signals for pulse modulation.

LF

Rear panel output for internal LF generator signal (option R&S SMF-B81).

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

EXT ALC

Input for detection voltage of an external level detector (requires option R&S SMF-B81).

This option is recommended for use of the instrument in a 19" rack. Installing the instrument in a 19" rack requires a rack adapter (refer to data sheet for Order No.).

2.3 Putting into Operation

This section describes the basic steps to be taken when setting up the R&S SMF for the first time.

Putting into Operation

A WARNING

Risk of injury and instrument damage

The instrument must be used in an appropriate manner to prevent electric shock, fire, personal injury, or damage.

- Do not open the instrument casing.
- Read and observe the "Basic Safety Instructions" delivered as a printed brochure with the instrument.

In addition, read and observe the safety instructions in the following sections. Notice that the data sheet may specify additional operating conditions.

NOTICE

Risk of instrument damage

Note that the general safety instructions also contain information on operating conditions that will prevent damage to the instrument. The instrument's data sheet may contain additional operating conditions.

NOTICE

Risk of instrument damage during operation

An unsuitable operating site or test setup can cause damage to the instrument and to connected devices. Ensure the following operating conditions before you switch on the instrument:

- All fan openings are unobstructed and the airflow perforations are unimpeded. The minimum distance from the wall is 10 cm.
- The instrument is dry and shows no sign of condensation.
- The instrument is positioned as described in the following sections.
- The ambient temperature does not exceed the range specified in the data sheet.
- Signal levels at the input connectors are all within the specified ranges.
- Signal outputs are correctly connected and are not overloaded.

NOTICE

Risk of electrostatic discharge (ESD)

Electrostatic discharge (ESD) can cause damage to the electronic components of the instrument and the device under test (DUT). ESD is most likely to occur when you connect or disconnect a DUT or test fixture to the instrument's test ports. To prevent ESD, use a wrist strap and cord and connect yourself to the ground, or use a conductive floor mat and heel strap combination.

For details refer to the basic safety instructions included at the front of the manual.

Putting into Operation

2.3.1 EMI Suppression

Electromagnetic interference (EMI) may affect the measurement results.

To suppress generated Electromagnetic Interference (EMI),

 Use suitable shielded cables of high quality. For example use double-shielded RF and LAN cables.

Note: USB cables are of varying and often poor quality. Therefore, check the quality of each individual USB cable as described in the service manual.

- Always terminate open cable ends.
- Note the EMC classification in the data sheet

2.3.2 Unpacking and Checking the Instrument

To remove the instrument from its packaging and check the equipment for completeness, proceed as follows:

- 1. Pull off the polyethylene protection pads from the instrument's rear feet and then carefully remove the pads from the instrument handles at the front.
- 2. Pull off the corrugated cardboard cover that protects the rear of the instrument.
- 3. Carefully unthread the corrugated cardboard cover at the front that protects the instrument handles and remove it.
- 4. Check the equipment for completeness using the delivery note and the accessory lists for the various items.
- Check the instrument for any damage. If there is damage, immediately contact the carrier who delivered the instrument. Make sure not to discard the box and packing material.

Packing material

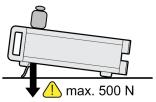
Retain the original packing material. If the instrument needs to be transported or shipped at a later date, you can use the material to protect the control elements and connectors.

2.3.3 Placing or Mounting the Instrument

The R&S SMF is designed for use under laboratory conditions, either on a bench top or in a rack using a rack adapter kit (order number see data sheet).

Bench Top Operation

If the R&S SMF is operated on a bench top, the surface should be flat. The instrument can be used in horizontal position, standing on its feet, or with the support feet on the bottom extended.

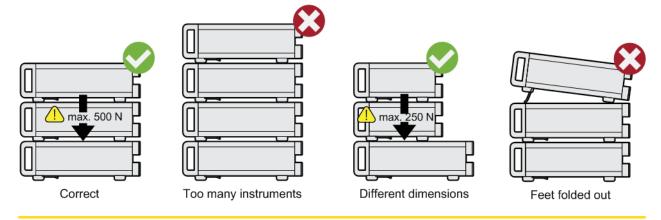

Putting into Operation

A CAUTION

Risk of injury if feet are folded out

The feet may fold in if they are not folded out completely or if the instrument is shifted. This may cause damage or injury.

- Fold the feet completely in or completely out to ensure stability of the instrument. Never shift the instrument when the feet are folded out.
- When the feet are folded out, do not work under the instrument or place anything underneath.
- The feet can break if they are overloaded. The overall load on the folded-out feet must not exceed 500 N.


A CAUTION

Risk of injury and instrument damage if stacking instruments

A stack of instruments may tilt over and cause injury. Furthermore, the instruments at the bottom of the stack may be damaged due to the load imposed by the instruments on top.

Observe the following instructions when stacking instruments:

- Never stack more than three instruments with the same dimensions (width and length). If you need to stack more than three instruments, install them in a rack.
- The overall load imposed on the lowest instrument must not exceed 500 N.
- All instruments should have the same dimensions (width and length).
 If you need to stack smaller instruments on the top, the overall load imposed on the lowest instrument must not exceed 250 N.
- If the instruments have foldable feet, fold them in completely.

Putting into Operation

Rackmounting

The R&S SMF can be installed in a rack using a rack adapter kit (Order No. see data sheet). The installation instructions are part of the adapter kit.

NOTICE

Risk of instrument damage in a rack

An insufficient airflow can cause the instrument to overheat, which may disturb the operation and even cause damage.

Make sure that all fan openings are unobstructed, that the airflow perforations are unimpeded, and that the minimum distance from the wall is 10 cm.

2.3.4 Connecting the Instrument to the AC Supply

The R&S SMF is automatically adapted to the AC voltage supplied. There is no need to set the voltage manually or change fuses. The AC SUPPLY AND POWER SWITCH is at the rear of the unit.

► Connect the instrument to the AC power source using the AC power cable delivered with the instrument.

Note: The instrument is in compliance with safety class EN61010-1. Connect the instrument only to a socket with earthing contact.

2.3.5 Starting the Instrument

Switching off the AC power

You can leave the AC power on permanently to preserve your last instrument settings. Switching off is required only if the instrument must be completely disconnected from all power supplies.

Starting up instruments with power switch

- 1. Connect the instrument to the AC supply.
- To turn the power on, press the main power switch to position I (On).
 After power-up, the instrument is in standby or ready state, depending on the state of the ON/STANDBY key at the front panel of the instrument when the instrument was switched off for the last time.
- 3. In case the instrument is in standby mode, i.e. the yellow LED is on, press the ON/ STANDBY key to switch the instrument to ready state.

Putting into Operation

2.3.5.1 Standby and Ready state

The ON/STANDBY key is located in the bottom left corner of the front panel.

Switching between standby and ready state

► Press the ON/STANDBY key briefly to switch the instrument from the standby to ready state or vice versa.

In ready state, the left, green LED is on. The instrument is ready for operation. All modules are power-supplied and the R&S SMF initiates its startup procedure. In standby state, the right, yellow LED is on. The standby power only supplies the power switch circuits and the oven-controlled crystal oscillator to keep it at its operating temperature. In this state it is safe to switch off the AC power and disconnect the instrument from the power supply.

2.3.5.2 Start Display and Booting

The instrument boots the operating system, starts the instrument firmware and automatically performs a selftest. If the previous session was terminated regularly, the instrument uses the last setup with the relevant instrument settings.

Once the startup procedure has been terminated, the block diagram opened in the previous session is displayed and the instrument is ready for operation.

Use the PRESET key to return the instrument to its definite reset/preset state, if the current setup is not anymore relevant.

To customize the start settings, use the "File" dialog.

Rebooting the instrument

Press the STANDBY key for approx. 5 s. to reboot the instrument, if the software stops unexpectedly.

2.3.5.3 Function Check

The signal generator automatically monitors the main functions when the instrument is switched on and continuously during operation.

A detected fault is indicated by a "ERROR" message displayed in the info line together with a brief error description. For in-depth identification of the error, press the INFO key. In response, a description of the error(s) is displayed.

For more information, refer to Chapter 9, "Status Information, Error Messages and Troubleshooting", on page 605.

Additionaly to the automatic monitoring, the R&S SMF offers the following capabilities to ensure correct functioning:

Internal Adjustments

Putting into Operation

Press the SETUP key and select "System > Internal Adjustments" to access the dialog for preforming and configuring of the adjustments settings. A maximum level accuracy can be obtained, for instance.

Selftest

A selftest is provided for service purposes. The selftest is a protected test procedure, which can be accessed if protection level 1 is disabled.

2.3.5.4 Default Settings

When the instrument is switched on, it is not the preset state that is active, but rather the instrument state that was set before the instrument was switched off. It is also recomended that you use the PRESET key to return the instrument to its defined preset state every time a new configuration is required or the current setup is not anymore relevant.

The R&S SMF offers a two-stage preset concept:

- Preset the instrument to a predefined state
 The PRESET key calls up a defined instrument setup. All parameters and switching states are preset (also those of inactive operating modes). The default instrument settings provide a reproducible initial basis for all other settings. However, functions that concern the integration of the instrument into a measurement setup are not changed, e.g. GPIB bus address or reference oscillator source settings.
- Preset the instrument to its factory settings
 The instrument can also be forced to load its default factory settings. To access the corresponding dialog box, press the SETUP key and select the "Factory Preset".

 For more information and an overview of the settings affected by the factory preset function, see Chapter 5.2.3.21, "Factory Preset", on page 134.

Overview of the Most Important Preset States

The following list gives an overview of the presets for the most important generator settings. The other presets can be found in the preset tables of the individual menus and the information accompanying the remote commands.

- "RF frequency" = 1 GHz
- "RF level" RF output switched off
- "Offsets" = 0
- "Modulations State" = Off
- Uninterrupted level settings are switched off "Level Attenuator Mode" = AUTO
- Internal level control "Level ALC" = AUTO
- User correction "Level Ucor" = OFF
- "LF output State" = Off
- "Sweep State" = Off
- "List mode State" = Off

Settings that are not affected by the PRESET key

Reference frequency settings ("Ref Oscillator" menu)

Putting into Operation

- Power on settings ("Level/EMF" menu)
- Network settings ("Setup" menu)
- GPIB address ("Setup" menu)
- *IDN? Identification and emulation ("Setup" menu)
- Password and settings protected by passwords ("Setup" menu)
- Start/Stop Display Update ("Setup" menu)
- Display and keyboard settings ("Setup" menu)

User-defined instrument states can be stored and called up in the "File" dialog.

2.3.6 Shutting Down the Instrument

To shut down the R&S SMF, proceed as described below.

NOTICE

Risk of losing data

If you switch off the running instrument using the rear panel switch or by disconnecting the power cord, the instrument loses its current settings. Furthermore, program data may be lost.

Press the ON/STANDBY key first to shut down the application properly.

1. Press the ON/STANDBY key to save the current setup, shut down the operating system and set the instrument to standby state.

The yellow LED must be on.

2. To switch off the power, press the main power switch to position 0 (Off).

None of the front-panel LEDs should be on.

2.3.7 Power Fuses

The R&S SMF is fully fused by two fuses IEC127-T4H/250 V.

The fuses are accommodated in the fuse holders next to the power connector. Use only fuses of the mentioned type.

Connecting External Accessories

WARNING

Shock hazard

Before replacing a fuse, make sure that the instrument is switched off and disconnected from all power supplies.

Always use fuses supplied by Rohde & Schwarz as spare parts, or fuses of the same type and rating.

2.4 Connecting External Accessories

The equivalent USB ports on the front and/or rear panel of the R&S SMF can be used to connect a variety of accessories.

In addition the instrument provides interfaces for network integration (see Chapter 2.6, "Setting Up a Network (LAN) Connection", on page 38).

2.4.1 Connecting USB Devices

Via the USB ports, you can connect external devices directly to the R&S SMF. If you need more interfaces, you just use an USB hub.

The following list shows various USB devices that can be useful:

- Memory stick for easy transfer of data to/from a computer (for example firmware updates)
- CD-ROM drives for easy installation of firmware applications
- Keyboard or mouse to simplify the entry of data, comments, file names, etc.
- Power sensors, for example of the NRP Zxy family

Installing USB devices is easy under Linux, because all USB devices are plug&play. After a device is connected to the USB interface, the operating system automatically searches for a suitable device driver.

If Linux does not find a suitable driver, it will prompt you to specify a directory that contains the driver software. If the driver software is on a CD, connect a USB CD-ROM drive to the instrument before proceeding.

When a USB device is subsequently disconnected from the R&S SMF, the operating system immediately detects the change in hardware configuration and deactivates the corresponding driver.

All USB devices can be connected to or disconnected from the instrument during operation.

Connecting a memory stick or CD-ROM drive

If installation of a memory stick or CD-ROM drive is successful, the operating system informs you that the device is ready to use. The device is made available as a new drive (/usb). The name of the drive is manufacturer-dependent.

Linux Operating System

Connecting a keyboard

The keyboard is detected automatically when it is connected. The default keyboard layout is English – US.

Use the "Setup > Keyboard Settings" dialog to configure the keyboard properties.

Connecting a mouse

The mouse is detected automatically when it is connected.

2.5 Linux Operating System

The instrument uses an embedded Linux operating system. To make sure that the instrument software works properly, certain rules must be adhered to concerning the operating system.

NOTICE

Risk of causing instrument unusability

The instrument is equipped with the Linux operating system. Additional software can therefore be installed on the instrument. The use and installation of additional software may impair instrument function. Thus, run only programs that Rohde & Schwarz has tested for compatibility with the instrument software.

The drivers and programs used on the instrument under Linux have been adapted to the instrument. Existing instrument software must always be modified using only update software released by Rohde & Schwarz.

The configuration of the operating system is optimally adapted to signal generator functions in the factory. Changes in the system setup are only required when peripherals like keyboard are installed or if the network configuration does not comply with the default settings (see Chapter 2.6.1, "Connecting the Instrument to the Network", on page 39). After the R&S SMF is started, the operating system boots and the instrument firmware is started automatically.

Accessing Operating System

No access to the operating system is required for normal operation.

All necessary system settings can be made in the "Setup" dialog.

The R&S SMF provides a internal CompactFlashTM Card, it does not contain a disk drive. The CompactFlashTM Card holds the firmware and the stored data. However, data transfer is only possible via a memory stick connected to a USB interface. The memory stick and the CompactFlashTM Card are accessed via the "File Manager".

Setting Up a Network (LAN) Connection

Accessing the File System

The instrument also supports two standard methods to access the file system form a remote client:

- FTP (file transfer protocol)
- File sharing according to the SAMBA/SMB (server message block) protocol.

Both methods allow the access to the folder /var/user/share.

Default password

The FTP and SAMBA/SMB file access use the user "instrument" with the default password "instrument".

It is highly recommenced that you change this password in the Chapter 5.2.3.19, "Security", on page 128 dialog before connecting the instrument to the network!

Refer also to Application Note 1GP72 "Connectivity of Signal Generators", provided on the Rohde & Schwarz website, at http://www.rohde-schwarz.com/appnotes.

Screen saver

A screen saver can be activated in the R&S SMF. When active, the display is shut off when no entries via front panel, external mouse or external keyboard are made for a period of time. The screen saver prolongs the life time of the display.

Use the "Setup > Display Settings" dialog to switch on or off the screen saver and to adjust the screen saver settings.

2.6 Setting Up a Network (LAN) Connection

The R&S SMF is equipped with a network interface and can be connected to an Ethernet LAN (local area network). Provided the appropriate rights have been assigned by the network administrator and the Linux firewall configuration is adapted accordingly, the interface can be used, for example:

- To transfer data between a controller and the instrument, e.g. in order to run a remote control program.
 See Chapter 6, "Remote Control Basics", on page 309.
- To access or control the measurement from a remote computer using the R&S VISA or Ultr@VNC programs (or similar tools, like another VNC client or any Web browser supporting Java)
- To transfer data from a remote computer and back, e.g. using network folders

This section describes how to configure the LAN interface. It includes the following topics:

- Chapter 2.6.1, "Connecting the Instrument to the Network", on page 39
- Chapter 2.6.2, "Assigning the IP Address", on page 40

Setting Up a Network (LAN) Connection

Accessing Operating System

No access to the operating system is required for normal operation.

All necessary system settings can be made in the "Setup" dialog.

2.6.1 Connecting the Instrument to the Network

There are two methods to establish a LAN connection to the instrument:

- A non-dedicated network (Ethernet) connection from the instrument to an existing network
- A dedicated network connection (Point-to-point connection) between the instrument and a single computer

In both cases, an IP address has to be assigned to the instrument and the computer, which is usually accomplished automatically. See also Chapter 2.6.2, "Assigning the IP Address", on page 40.

To set up a network (LAN) connection

Risk of network failure

Before connecting the instrument to the network or configuring the network, consult your network administrator. Errors may affect the entire network.

Connect the instrument to the network or to a single PC.

If the instrument is connected to the LAN, the operating system automatically detects the network connection and activates the required drivers.

By default, the instrument is configured to use dynamic TCP/IP configuration and obtain all address information automatically.

The network card can be operated with a 10/100 Mbps Ethernet IEEE 802.3u interface.

Risk of network connection failure

Network cables and cable connectors of poor quality may cause network connection failures.

If the network connection to the instrument fails, check the network infrastructure and contact your network administrator.

For details, see section "Status Information, Error Messages and Troubleshooting".

Setting Up a Network (LAN) Connection

2.6.2 Assigning the IP Address

Depending on the network capacities, the TCP/IP address information for the instrument can be obtained in different ways.

- If the network supports dynamic TCP/IP configuration using the Dynamic Host Configuration Protocol (DHCP), all address information can be assigned automatically.
- If the network does not support DHCP, the instrument tries to obtain the IP address
 via Zeroconf (APIPA) protocol. If this attempt does not succeed or if the instrument
 is set to use alternate TCP/IP configuration, the addresses must be set manually.

By default, the instrument is configured to use dynamic TCP/IP configuration and obtain all address information automatically. This means that it is safe to establish a physical connection to the LAN without any previous instrument configuration.

NOTICE

Risk of network errors!

Connection errors can affect the entire network.

If your network does not support DHCP, or if you choose to disable dynamic TCP/IP configuration, you must assign valid address information before connecting the instrument to the LAN.

Contact your network administrator to obtain a valid IP address.

Assigning the IP address on the instrument

- 1. Press the SETUP key and select the "Network Settings" dialog.
- 2. Set the "Address Mode" to Static.
- Select the "IP Address" and enter the IP address, for example 192.168.0.1..
 The IP address consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.
- 4. Select the "Subnet Mask" and enter the subnet mask, for example *255.255.255.0*. The subnet mask consists of four number blocks separated by dots. Every block contains 3 numbers in maximum.

Use computer names to identify the instrument

In networks using a DHCP server, it is recommended that you address the instrument by its unambiguous computer name, see Chapter 2.6.3, "Using Computer Names", on page 41.

A computer name (*hostname*) is an unique dedicated identification of the instrument, that remains permanent as long as it is not explicitly changed. Hence, you can address an instrument by the same identification (computer name), irrespectively if a network or a point-to-point connection is used.

Remote Access via an External Controller

To assign the IP address manually on the remote computer

▶ Obtain the necessary information from your network administrator. If you use more than one LAN connector, you need separate address information for each connector.

For information on how to perform the configurations, refer to the documentation of the operating system the remote computer uses.

2.6.3 Using Computer Names

In a LAN that uses a DNS server (Domain Name System server), each PC or instrument connected in the LAN can be accessed via an unambiguous computer name instead of the IP address. The DNS server translates the host name to the IP address. This is especially useful when a DHCP server is used, as a new IP address may be assigned each time the instrument is restarted.

Each instrument is delivered with an assigned computer name, but this name can be changed.

The default instrument name is a non-case-sensitive string that follows the syntax rs<instrument><serial number>.

The serial number can be found on the rear panel of the instrument. It is the third part of the device ID printed on the bar code sticker:

Querying and changing a computer name

- Press the "Setup" key and select "Network Settings".
 The computer name is displayed under "Hostname".
- 2. Press the "Setup" key, select "Protection" and enable the "Protection Level 1". The default password is *123456*.
 - The parameter "Hostname" in the "Network Settings" dialog is now enabled for configuration.
- 3. Change the "Hostname".

2.7 Remote Access via an External Controller

The R&S SMF can be remote accessed from a remote computer (external controller) via a network link. This allows convenient operation of the instrument from the desktop although the instrument is integrated in a rack somewhere else.

Remote Access via an External Controller

For an overview of the instrument's operating concept and the different ways to control and operate the instrument, see Chapter 3.1, "Brief Introduction to the Instrument's Concept", on page 59.

There are different ways to establish a remote access connection to the signal generator but all of them require an established LAN connection between the instrument and the remote computer. The simplest way to remote access the instrument is to use a Web browser, such as Windows Internet Explorer or Mozilla Firefox for instance. Alternatively a remote access via a special application can be used.

For example, the free-of-charge program Ultr@VNC for PCs with Linux/Unix or Windows operating system is available for setting up the remote access connection. Using this application requires additional installation.

See the following table for an overview of the different ways to establish a remote access connection to the signal generator.

Table 2-2: Remote access via an external computer

Remote access via	LAN connec- tion	Installation of the additional application	
		on the instrument	on the remote computer
Any web browser for example Windows Internet Explorer or Mozilla Firefox, see Chapter 2.7.1, "Using a Web Browser for Remote Access", on page 43	required	no	Java Runtime must be installed and activated in the browser settings.
Web browser with HTML5 for example LXI Browser, see Chapter 2.8.2.4, "Web Control", on page 55	required	no	Web sockets must be supported.
VNC Client for example Ultr@VNC or other dedicated client software for PCs with Linux/Unix or Windows operating system see Chapter 2.7.2, "Remote Access via a VNC Client Software", on page 44	required	required	VNC Viewer required

When the connection is set up with a VNC client software (Ultr@VNC), direct control on the instrument is possible while remote access is established.

For return to direct operation on the instrument, the connection must be cut. After cutting the connection, it is still enabled and can be established again any time. The connection is disabled only after deactivation of the program.

This section gives an information on how to use the Web browser for remote access, how to install the applications for remote access and how to establish the connection between the instrument and an external computer with Windows operating system. Remote access via an external computer with Linux/Unix operating system is performed accordingly.

Remote Access via an External Controller

Default password

Remote-access and file access require the user "instrument" with default password "instrument".

NOTICE

Changing the default user and security passwords

It is highly recommended to change the default user and security passwords in the menu "Setup > Security" before connecting the instrument to the network (see section Chapter 5.2.3.19, "Security", on page 128).

2.7.1 Using a Web Browser for Remote Access

The instrument can be remote-accessed via any web browser, as for example the Windows Internet Explorer or Mozilla Firefox.

Alternatively, you can also make use of the LXI browser, as described in Chapter 2.8.2.4, "Web Control", on page 55.

To remote access the instrument via a web browser:

- 1. Connect the instrument and the remote computer to a LAN, see Chapter 2.6.1, "Connecting the Instrument to the Network", on page 39.
- 2. Instal the Java Runtime Environment JRE on the remote computer.
- 3. Type the instruments' IP address in the address field of the Web browser on your PC, e.g. http://10.111.11.1

The "VNC Authentication" screen appears.

4. Enter the password and select "OK".

Remote Access via an External Controller

The default password is "instrument".

After the connection is established, the current signal generator screen with the block diagram is displayed and the instrument can be remote-accessed from the remote computer.

2.7.2 Remote Access via a VNC Client Software

A VNC client software is an application which can be used to access and control the instrument from a remote computer via LAN.

The following description explains how to establish the remote access, represented by means of the client software Ultr@VNC. The software is included in Linux/Unix operating system, but it is also available as a free-of-charge download on the Internet http://www.uvnc.com/download/index.html. Thus, it is also available for remote computers with Windows operating system.

The GUI appearance of Ultr@VNC may vary if you use a later release. Also, similar programs may deviate in some details, but the basic procedure is the same.

NOTICE

Risk of Unauthorized Access

If the VNC service is enabled on the instrument, any user in the network who knows the computer name and password can access it.

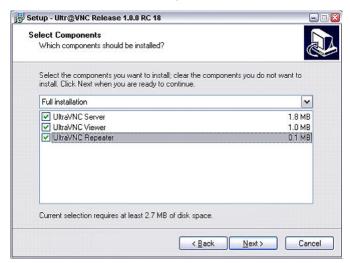
Disable the VNC service on the instrument to prevent unauthorized access.

See "LAN Services" on page 131.

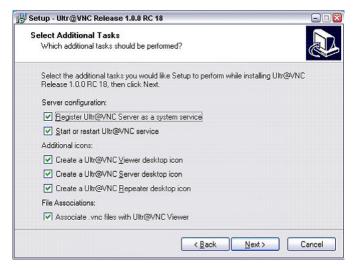
Setting up a VNC connection

- 1. Connect the instrument and the remote computer to a LAN, see Chapter 2.6.1, "Connecting the Instrument to the Network", on page 39.
- 2. Install the Ultr@VNC application and enable it on the instrument.
- 3. In the ICF firewall, enable communication on the network via Ultr@VNC program.
- 4. Install the VNC Viewer on the remote computer with Windows operating system, see "Installing the VNC Viewer on a Windows PC" on page 46.
- 5. Set up the VNC connection between the instrument and:
 - a) the remote computer with Linux/Unix operating system, see "Setting up the VNC connection on the Linux/Unix remote computer" on page 47;
 - b) the remote computer with Windows operating system, see "Setting up the VNC connection on the Windows remote computer" on page 47.

Remote Access via an External Controller



Enabled Direct Control


The direct control of the instrument is not disabled and the instrument can be controlled from the front panel and via the remote computer alternately.

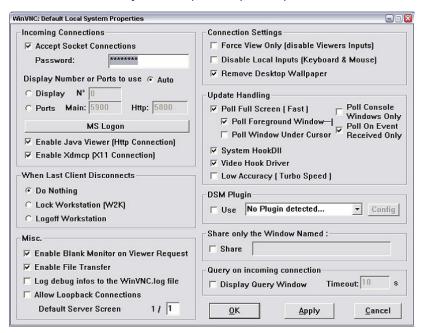
Installing the Ultr@VNC application

- 1. Download the program from the internet and copy it to a directory that can be accessed.
- 2. On the instrument, shut down firmware using the ALT+F4 key combination.
- Double click on the setup file to start the installation.
 The setup wizard leads through the installation. This description focus only on the relevant settings.
 - a) Select installation of all components.

b) In the "Additional Task Panel", enable all entries.

A successful installation is indicated by a message.

Remote Access via an External Controller



At the same time a warning is displayed stating that a password must be set.

4. Select "OK".

The "Default Local System Properties" panel opens.

5. Enter a password with a length of at least five digits.

This password is used on the remote computer to access the instrument. Other settings may be changed according to the user-specific security requirements.

After the installation the Ultr@VNC program is automatically started together with the operating system. On mouse over, the IP address of the instrument is indicated.

This IP address and the user-defined password are the prerequisites to enable remote access on the remote computer. Terminated connection is indicated by changed icon color.

Installing the VNC Viewer on a Windows PC

 Download the Ultr@VNC program form internet and follow the installation instructions.

Only the program component VNC Viewer is required.

Remote Access via an External Controller

Note: The VNC Viewer program is included in the download for the installation of the Ultr@VNC program on the signal generator if "Full installation" was selected in the "Select Component" panel. In this case, the program ultr@vncviewer.exe can be copied to the Windows PC.

2. Install VNC Viewer program component on the remote computer.

Setting up the VNC connection on the Linux/Unix remote computer

The VNC program is available per default for Linux/Unix operating systems.


- 1. Start a Web browser on the remote computer and enter the IP address of the instrument.
- 2. Enter the following address: vnc://<IP-address of the instrument>, e.g. vnc://192.168.1.1.
 - A dialog is opened and the password for the remote VNC connection is requested.
- 3. Enter the password as defined in the "Default Local System Properties" panel of the Ultr@VNC program and select "Log On".

The connection is established, the instrument is remote accessed and the current signal generator screen with the block diagram is displayed. The individual functions are operated using the mouse and keyboard.

In contrast to remote access via Remote Desktop, the direct control of the instrument is not disabled and the instrument can be controlled from the front panel and via the remote computer alternately.

Setting up the VNC connection on the Windows remote computer

1. Start VNC Viewer program component on the PC, select "VNC Server" and enter IP address of the instrument.

2. To initialize the connection, select "Connect".

A message requesting the password appears.

Remote Access via an External Controller

3. Enter the password as defined in the "Default Local System Properties" panel of the Ultr@VNC program and select "Log On".

The connection is established, the instrument is remote accessed and the current signal generator screen with the block diagram is displayed. The individual functions are operated using the mouse and keyboard.

Enabled Direct Control

The direct control of the instrument is not disabled and the instrument can be controlled from the front panel and via the remote computer alternately.

Terminating VNC Connection

The remote access via VNC connection can be terminated either on the R&S SMF or on the external PC. Terminating the connection does not disable it. It can be established again any time. See the notice above concerning unauthorized access due to VNC connection!

- 1. Terminate the connection on the R&S SMF
 - a) Press the "Windows" key to access the operating system.
 - b) Right-click on the VNC icon on the task bar and select "Kill all clients".
- 2. To terminate the connection on the external Linux/Unix PC, close the internet browser or close the signal generator window.
- 3. To terminate the connection on the external Windows PC, close the VNC Viewer program.

The connection is terminated. The color of the VNC icon in the status bar of the instrument changes.

A message on the external PC indicates the disconnection.

Disabling Remote Access via Ultr@VNC

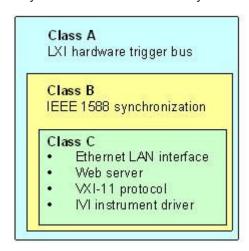
The VNC connection can be disabled by removing the program on the instrument or by deactivating the VNC Server service.

- 1. Remove the VNC program
 - a) Press the "Windows" key to access the operating system and open the "Add or Remove Programs" by selecting "Start > Settings > Control Panel > Add or Remove Programs".
 - b) Remove the VNC program.
- 2. Deactivate the VNC Server service
 - a) Press the "Windows" key to access the operating system and open the "Services" by selecting "Start > Settings > Control Panel > Services".

LXI Configuration

b) Deactivate the VNC Server service.

The connection is disabled, the VNC icon disappears from the task bar of the instrument.


2.8 LXI Configuration

LAN eXtensions for Instrumentation (LXI) is an instrumentation platform for measuring instruments and test systems that is based on standard Ethernet technology. LXI is intended to be the LAN-based successor to GPIB, combining the advantages of Ethernet with the simplicity and familiarity of GPIB.

Like GPIB, LXI determines and standardizes the way the instrument behaves in a LAN. The LXI implementation by the Rohde&Schwarz signal generators allows you to change certain LAN settings, to reset the LAN connection as well as to easy identificate the instrument.

LXI classes and LXI functionality

LXI-compliant instruments are divided into three classes, A, B and C, with the functionality of the classes hierarchically based one upon the other:

- Class C instruments are characterized by a common LAN implementation, including an ICMP ping responder for diagnostics. The instruments can be configured via a web browser; a LAN Configuration Initialize (LCI) mechanism resets the LAN configuration. The LXI class C instruments shall also support automatic detection in a LAN via the VXI-11 discovery protocol and programming by means of IVI drivers.
- Class B adds IEEE 1588 Precision Time Protocol (PTP) and peer-to-peer communication to the base class. IEEE 1588 allows all instruments on the same network to automatically synchronize to the most accurate clock available and then provide time stamps or time-based synchronization signals to all instruments with exceptional accuracy.
- Class A instruments are additionally equipped with the eight-channel hardware trigger bus (LVDS interface) defined in the LXI standard.

LXI Configuration

For information about the LXI standard refer to the LXI website at http://www.lxistandard.org. See also "News from Rohde & Schwarz, article 2006/II - 190".

Instruments of classes A and B can generate and receive software triggers via LAN messages and communicate with each other without involving the controller.

The R&S SMF complies with LXI class C and provides an integrated "LXI Status" dialog for LXI status indication and reset of the LAN configuration (LAN Configuration Initialize, LCI). To access the LXI Status dialog, press the SETUP key and select "Remote > LXI Status".

For further information, see section "LXI Status" in the Operating Manual.

Firmware update

After a firmware update, shut-down and re-start the instrument in order to enable the full LXI functionality.

Default state of the network settings

According to the LXI standard, an LCI must set the following parameters to a default state.

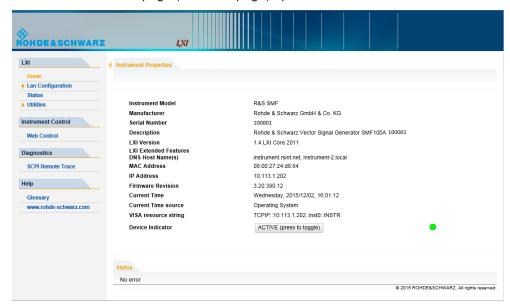
Parameter	Value
TCP/IP Mode	DHCP + Auto IP Address
Dynamic DNS	Enabled
ICMP Ping	Enabled
Password for LAN configuration	LxiWeblfc

The LCI for the R&S SMF also resets the following parameters:

Parameter	Value
Hostname	<instrument-specific host="" name=""></instrument-specific>
Description	Vector Signal Generator
Negotiation	Auto Detect
VXI-11 Discovery	Enabled

The LAN settings are configured using the instrument's "LXI Browser Interface".

LXI Configuration

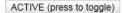

2.8.1 LXI Browser Settings

To access the instrument via the web browser:

➤ Type in the instrument's host name or IP address in the address field of the browser on your PC, for example "http://10.113.1.205".

Note: Do not add the missing zeros in the IP address, while opening the instrument home page.

The instrument home page (welcome page) opens.


The navigation pane of the browser interface contains the following elements:

- "LXI"
 - "Home" opens the instrument home page.
 The home page displays the device information required by the LXI standard, including the VISA resource string in read-only format.
 - "Device Indicator" activates or deactivates the LXI status indication.
 When activated, the LXI LEDs flash, both in the browser dialog and in the LXI dialog of the connected instrument. A green LXI status symbol indicates that a LAN connection has been established; a red symbol indicates that no LAN cable is connected.
 - "Lan Configuration" allows you to configure LAN parameters and to initiate a ping, see Chapter 2.8.2.3, "Ping Client", on page 54.
 - "Status" displays information about the LXI status of the instrument.
 - "Utilities" provides access to the LXI event log functionality required by the LXI standard.
- "Instrument Control"
 - "Web Control" provides remote access to the instrument, see Chapter 2.8.2.4,
 "Web Control", on page 55.
- "Diagnostics"

LXI Configuration

 "SCPI Remote Trace" records messages exchanged via the remote control interface, see Chapter 2.8.2.5, "SCPI Remote Trace", on page 57.

- "Help"
 - "Glossary" explains terms related to the LXI standard.
 - www.rohde-schwarz.com opens the Rohde & Schwarz home page.
- ▶ Press the "INACTIVE (press to toggle)" button to activate the connection.

A green flashing status LED indicates the active connection. If the LAN connection fails, the LED turns red.

The status of the LAN connection is also indicated by the "LAN Status indicator" in the "LXI Status" dialog.

For further information, see section "LXI Status" in the Operating Manual.

2.8.2 LAN Configuration

The "LAN Configuration" web page provides access to the parameters required for identifying the R&S SMF in the network, and allows modification.

Password protection

Changing the LAN configuration is password-protected. The default password is *Lxi-Weblfc* (notice upper and lower case characters). This password cannot be changed in the current firmware version.

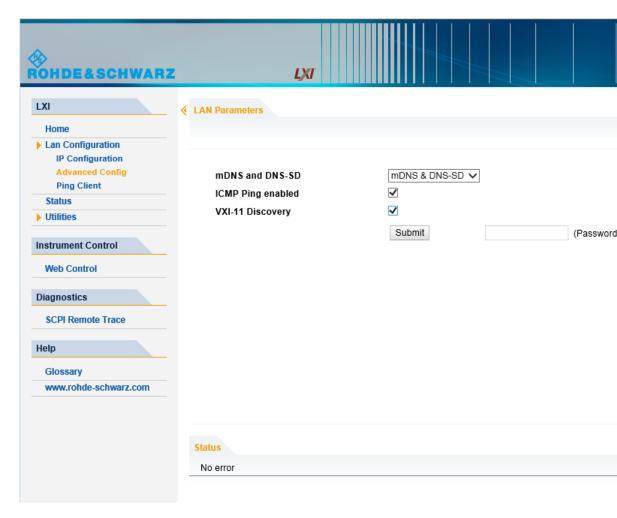

It comprises the following navigation entries.

	IP Configuration	52
	Advanced LAN Configuration	
	Ping Client	
•	Web Control	55
•	SCPI Remote Trace	57

2.8.2.1 IP Configuration

The "IP Configuration" page displays all mandatory LAN parameters.

LXI Configuration


The "IP Address Mode" selects a configuration mode for the IP address of the R&S SMF. With static configuration, the entered IP address, subnet mask, and default gateway are used. With dynamic configuration, DHCP or dynamic link local addressing (automatic IP) are used to obtain the instrument IP address.

See Chapter 2.6.2, "Assigning the IP Address", on page 40.

2.8.2.2 Advanced LAN Configuration

The "Advanced Config" page provides LAN settings that are not declared mandatory by the LXI standard.

LXI Configuration

The following advanced parameters are available:

- "mDNS and DNS-SD": The additional protocols "multicast DNS" and "DNS service discovery" are used for device communication in zero configuration networks, working without DNS and DHCP.
- "ICMP Ping enabled": Must be enabled to use the ping utility.
 If you disable this setting, the instrument does not answer ping requests. The setting does not affect the LXI ping client. You can ping other hosts from the instrument, even if the setting is disabled.
- "VXI-11 Discovery": Must be enabled to detect the instrument in the LAN.
 If you disable this setting, the instrument cannot be detected by the VXI-11 discovery protocol mechanism. The setting does not affect other detection mechanisms.
 Setting up a VXI-11 connection via the IP address or the host name is independent of this setting.

2.8.2.3 Ping Client

The "Ping Client" page provides the ping utility to verify the connection between the LXI-compliant instrument and another device.


LXI Configuration

The ping is initiated from the instrument. Using the ICMP echo request and echo reply packets, the function checks whether the communication with a device via LAN works. Ping is useful for the diagnosis of IP network or router failures.

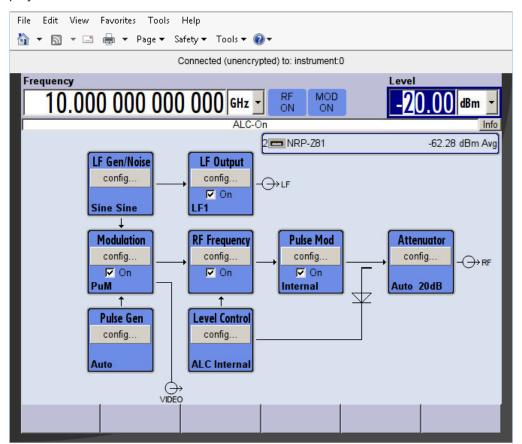
The ping utility is not password-protected.

To initiate a ping from the instrument to the device:

- 1. Enable "ICMP Ping" on the "Advanced LAN Configuration" page.
- 2. Select the "Ping Client" page.
- 3. In the "Destination Address" field, enter the IP address of the device to be pinged (without the ping command and without any further parameters), e.g. 10.113.1.203.
- 4. Select "Submit".

2.8.2.4 Web Control

The web control functionality provides remote operation via VNC using a Web browser (with HTML5). This mode does not require additional installation or activation. The VNC protocol allows simultaneous operation from several remote devices. The instrument remains locally operable.


The GUI of the R&S SMF is visible. To perform the settings, you can operate the instrument as with the manual control. The instrument controls are available via the front panel simulation. File upload and download between the instrument and the remote PC is also available.

LXI Configuration

Starting a Remote Control via the LXI web browser

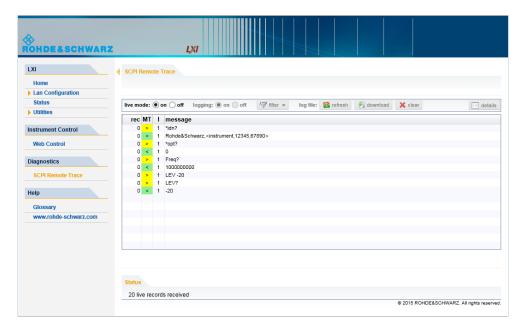
This section assumes that the instrument and the controller PC are connected in the LAN.

- 1. Start a web browser that supports html5 (W3C compliant).
- Enter the IP address of the R&S SMF in the browser's address bar.The R&S SMF's welcome page is displayed.
- In the navigation pane, select "Instrument Control" > "Web Control".
 Remote access to the instrument requires the password. The default password is instrument.
- Enter the password and confirm with the ENTER key.
 After the connection is established, the current screen of the R&S SMF is displayed in the browser window.

5. Use the mouse cursor and keyboard to access the functionality of the instrument as you would directly perform the settings on the instruments front panel.

R&S®SMF100A Preparing for Use

LXI Configuration


2.8.2.5 SCPI Remote Trace

The remote trace functionality allows you to trace input and output strings at the remote control interface of the R&S SMF.

A recorded trace (message log) can be evaluated directly in the dialog. Use the high-lighting and navigation functions provided in the lower toolbar to locate error messages and messages containing arbitrary search strings. You can also export the message log to a *.csv file and evaluate the file using a suitable program.

To trace and display messages:

- 1. In the navigation pane, select "Diagnostics" > "SCPI Remote Trace".
- 2. In the toolbar bar of the "SCPI Remote Trace" page, select "live mode" > "on" and "logging" > "on".
 - "live mode > on" displays all commands and responses, and "logging > on" also traces messages.
- 3. If you now control the R&S SMF with SCPI commands, using an appropriate tool, the SCPI remote trace records the information sent and received.

The function records all sent commands, received responses and messages, and stores them in an internal database. If "live mode" is disabled, you can display the recent traces upon request, using the "refresh" button. You can also store the log in a file

Note: The diagnostics functionality will be extended in later releases, e.g. to download or upload SCPI command files from / to the instrument.

Toolbars

The toolbar at the top of the dialog provides basic settings and functions.

R&S®SMF100A Preparing for Use

LXI Configuration

- "Live mode" / "logging": If logging is switched on, messages are traced. They are stored in an internal database and can be displayed upon request, using the refresh button (live mode off) or they can be displayed automatically (live mode on).
- "Filter": applies a filter to columns and/or rows when working (live mode off)
- "Refresh": reads the message log from the internal database and displays it
- "Download": stores the SCPI trace log to a *.csv file
- "Clear": deletes all message log entries in the database and on the screen
- "Details": displays details of the selected message, for example an SCPI command in hex format (also possible by double\-clicking a message)

Columns

The following columns are available if no column filter is applied:

- "Rec": record number of the message within the message log
- I: number of the subinstrument
- "MT": indicates the type of the message. Possible values and related message contents are:
 - > = incoming command
 - < = outgoing response to a query</p>
 - E = error message, highlighted by red color
 - T = execution time, i.e. time required by the instrument to process the command internally
- "message": indicates the type of the message. Possible values and related message contents are:
 - > = incoming command
 - < = outgoing response to a query</p>
 - E = error message, denoted in red
 - T = execution time, i.e. time required by the instrument to process the command internally

Brief Introduction to the Instrument's Concept

3 Getting Started

This section helps you to get familiar with the R&S SMF and provides an introduction to the general concept of the instrument with a sample of the possible application fields as well as a description of the main blocks in the signal generation flow.

This section also explains the operating concept in general and includes a brief introduction to operation by a step-by-step description of the configuration. The example is intended to provide a quick overview of the settings provided. No additional equipment is required.

3.1 Brief Introduction to the Instrument's Concept

The **operating concept** of the R&S SMF employs the following three ways of instrument control:

- Manual operation
- Remote control
- Remote access

Manual Operation

The R&S SMF can be entirely operated from the front panel. Peripherals such as mouse or keyboard can be connected but are not essential.

The R&S SMF is equipped with an intuitive user interface. The central element of the display is the block diagram that shows the signal flow and processing from the left on the display to most right, i.e. the generated signal can be seen at a glance.

Each block represents a functional unit of the instrument. Thus the user always knows the position at which a parameter has an effect in the signal flow. The main settings of a block are indicated in the block. The interconnection of employed inputs and outputs is also shown. The user is thus always informed about the connection of inputs and outputs in the signal flow and where they can be configured. A window is opened for each menu where parameters can be set. When the window is opened, an entry is made in the "Winbar" below the display. All open menus are of equal priority (not modal) and can be accessed any time.

The block diagram in the figure below shows a fully equipped instrument.

Brief Introduction to the Instrument's Concept

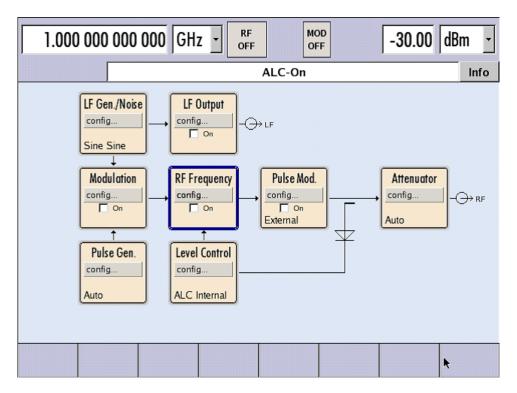


Figure 3-1: Block diagram of a fully equipped R&S SMF

With the aid of the rotary knob, the user can navigate in the block diagram and the dialogs, and can operate the instrument with one hand. The cursor is moved line by line through the block diagram or dialog. Turning the button clockwise advances the cursor. The selected block can be activated or deactivated with the TOGGLE key. Active blocks are highlighted by a colored background.

The instrument comprises a comprehensive info and help system. Context-sensitive help can be called any time with the HELP (F1) key. The help system indicates the currently selected parameter and offers additional services such as cross references, index and contents. The content of the help system corresponds to the operating manual of the instrument.

Warning and conflict messages caused by incorrect operation as well as further information are displayed in the "Info" line. A complete list of existing conflicts is displayed when the INFO (CTRL+I) key is pressed. Additional information on entries can be requested from the help system. The history function permits display of all messages.

Assistants simplify the completion of tables. After data entry in the assistant, the table is modified only after the "Accept" button has been pressed. Pressing the "Accept" button also stores the assistant data.

For an introduction into the manual operating of the instrument, detailed operating instructions and an overview of menus refer to Chapter 4, "Manual Operation", on page 73.

For an indepth description of the dialog boxes and the instrument functions refer to section Chapter 5.1, "Overview of Instrument Functions", on page 101.

Application Field of the Instrument

Remote Control

Remote control is an operation of the instrument by means of remote control commands or programs that automatize repeating settings. The instrument is connected to a computer running the program.

The R&S SMF supports various remote control connections:

- Connecting the instrument to a (LAN) network
- Using the LXI browser interface in a LAN network
- Connecting a PC via the IEC-bus (IEEE 488) interface
- Remote control via the USB interface

Tip: For remote control over LAN or USB, you can use the R&S VISA (Virtual Instrument Software Architecture) library provided for download at the Rohde & Schwarz website http://www.rohde-schwarz.com/rsvisa.

This way of operation and the instructions how to set up a connection for remote control are described in the Chapter 6, "Remote Control Basics", on page 309. The description of the remote control commands is provided in Chapter 7, "Remote Control Commands", on page 353.

Remote Access

Remote access is the operating of the instrument from a remote computer. Both the R&S SMF and the computer are connected in a LAN.

Remote access in contrast to **remote control** does not use remote-control commands but a separate software which is installed on the remote computer. After its start, the software simulates the user interface of the instrument. The instrument can thus be operated from the remote computer as on the unit itself. The individual functions are operated using the mouse and keyboard. Specific instrument functions can be executed using specific key combinations on the keyboard or a front panel key emulation that can be operated with the mouse.

This way of operation and the instructions how to set up a connection for remote access are described in Chapter 2.7, "Remote Access via an External Controller", on page 41.

3.2 Application Field of the Instrument

The main field of application of the R&S SMF is the generation of microwave signals with very high spectral purity. The signals can be generated with a set frequency and level (CW mode), based on a list with predefined frequency/level pairs (List mode), or as a sweep with corresponding parameters (Sweep mode).

The RF signal can also be generated in modulated form. Option R&S SMF-B20 provides two internal LF generators, a noise generator and two external modulation inputs EXT 1 and EXT 2 at the front of the instrument which are available as the source for

Description of Individual Diagram Blocks

analog and/or digital modulations. Option R&S SMF-K23 provides an internal pulse generator.

3.3 Description of Individual Diagram Blocks

Up-to-date information is available at R&S SMF homepage on the internet http://www.rohde-schwarz.com/product/smf100a.html).

RF Frequency block

In this block, the RF frequency settings are performed.

RF settings include:

- RF frequency and phase settings
- Frequency sweep settings including sweep markers
- List mode settings
- Reference oscillator settings

Note: Numeric values for frequency are entered best and quickest with the aid of the FREQ key.

Use the RF ON/OFF key to switch the RF output on or off.

Level Control block

In this block, the RF level settings are performed.

RF level settings include:

- RF level settings
- · RF level sweep settings including sweep markers
- Automatic level control
- NRP-Z Power Viewer using power sensors
- NRP-Z Power and Pulse Data Analysis using power sensors
- User Correction

Note: Numeric values for the level are entered best and quickest with the aid of the LEVEL key.

Modulation block

In this block, the modulation settings are performed. The MOD ON/OFF key switches the active modulation(s) on/off.

The external inputs EXT 1 and EXT 2 at the front of the instrument are provided for external amplitude, frequency, phase, and digital modulation (ASK, FSK, PSK).

Pulse modulation is available via the internal standard pulse generator. The external pulse modulation is available via the PULSE IN connector at the front of the instrument. The connector can be used as trigger input for internal pulse modulation. The external (and internal) pulse signal is output at the VIDEO connector at the back of the instrument.

Description of Individual Diagram Blocks

Internal Pulse Modulation with extended features, e.g. generation of double pulse, requires option R&S SMF-K23, Pulse Generator. The pulse signal is output at the PULSE OUT connector at the front of the instrument. Narrow pulse modulation is provided by option R&S SMF-K3, and pulse train by option R&S SMF-K27.

Note: For an overview of the modulation modes that can be simultaneously used, refer to the data sheet or to "Simultaneous Operation of Several Modulations or Other Operating Modes" on page 258.

The status display in the block shows the active modulation(s).

Use the TOGGLE ON/OFF key to switch the modulation on or off.

LF Gen./Noise block

In this block, two internal LF generators and a noise generator which can be used as internal modulation sources for analog modulations (amplitude modulation, frequency modulation, phase modulation) are configured. The LF/noise generators can also be used as the signal source for the LF output at the rear of the instrument.

The LF frequency sweep is also configured in this block.

LF Output block

In this block, the LF output and the LF level sweep are configured.

The internal LF generators, the noise generator, or the external inputs EXT 1 and EXT 2 can be selected as source for the LF output.

Pulse Gen. block

In this block, the settings for the internal pulse generator can be performed.

The pulse generator provides single and double pulse modulation with selectable pulse widths and periods. The signal is output at the PULSE OUT connector.

Pulse Mod. block

In this block, the narrow pulse modulation is activated and configured. Narrow pulse modulation requires option R&S SMF-K3.

Attenuator block

In this block, the attenuator settings for the RF signal are performed.

SMZxxx block

By connecting an R&S SMZ75/90/110/170 Frequency Multiplier, the R&S SMF indicates a separate block for the frequency multiplier. The block shows the model of the frequency multiplier and its associated frequency range.

The model of the multiplier is differentiated in the header of the block:

"SMZ-BxxxE" with electronical level control

"SMZ-BxxxM" with a mechanical level control

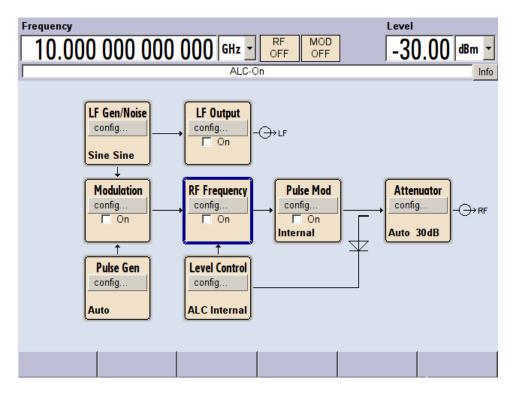
Example of Setup

In models with mechanical level control, the frequency range in the footer changes to the corresponding scale-setting for the adjusting screw.

"SMZxxx" without level control

Depending on the model of the frequency multiplier the R&S SMF adjusts the RF frequency and level automatically to the frequency multiplier, and shows the values in the header. Accordingly, further adjustments can be made in this block. For information in detail, see the manual of your R&S SMZ75/90/110/170.

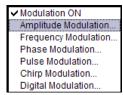
3.4 Example of Setup


This section provides an example on how to configure the instrument for generating of an amplitude modulated signal and of a frequency modulated signal with noise.

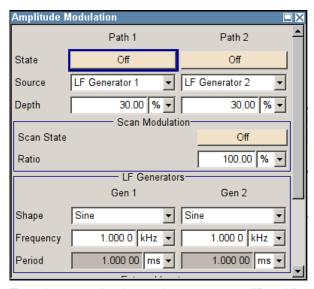
Generation of an Amplitude-Modulated Signal

To generate a simple AM-modulated signal, proceed as follow:

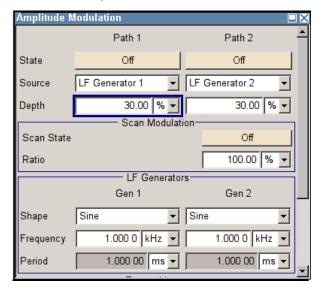
Activate default (preset) state
 Press the PRESET key to set a defined instrument state.


Example of Setup

- 2. Select and activate AM modulation
 - a) Turn the rotary knob and select the "Modulation" block.

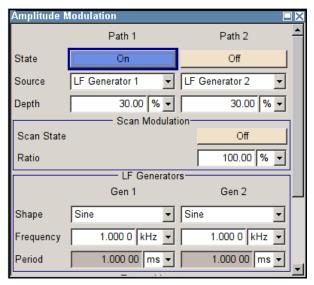


b) Press the rotary knob to open the dialog where the modulation can be selected (different modulation modes are available depending on the options installed).



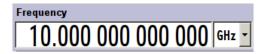
Example of Setup

c) Turn the rotary knob and highlight "Amplitude Modulation".Press the rotary knob to open the "Amplitude Modulation" dialog.

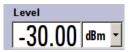


d) Turn the rotary knob to select parameter "Depth", press the rotary knob to allow editing and enter the preffered AM depth with the aid of the numeric keypad and the unit keys.

Example of Setup

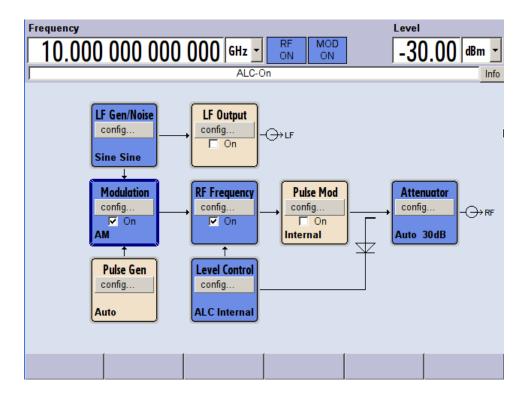

e) Finally, select "State" and press the rotary knob to switch on the AM modulation.

f) Press the DIAGRAM key to display the complete block diagram.


To indicate the active state, the "Modulation" block is displayed in blue. The "RF Frequency" is not yet active, which means that no RF signal is output.

- 3. Set frequency and level and activate RF signal
 - a) Press the FREQ key to activate the editing mode for frequency entry. The "Frequency" entry field in the header section of the display is highlighted.

Enter the frequency of the desired RF carrier using the numeric keypad and terminate the entry by pressing a unit key.


b) Press the LEVEL key and enter the level settings in the same way.

- c) Press the DIAGRAM key to display the complete block diagram.
- d) Turn the rotary knob to select the "RF Frequency" block.
 Press the RF ON/OFF key to activate the "RF Frequency" block.

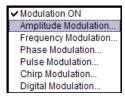
The AM modulation signal is now present at the RF output.

Example of Setup

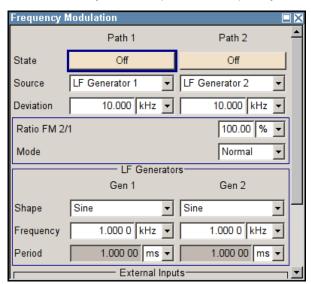
Generation of a Frequency Modulated Signal with Noise

To generate a simple FM-modulated with noise signal, proceed as follow:

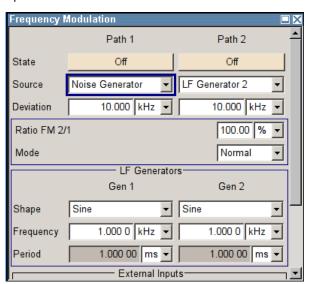
Activate default (preset) state
 Press the PRESET key to set a defined instrument state.


Example of Setup

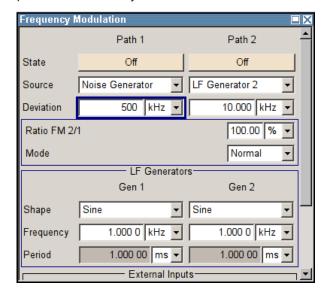
Select and activate FM modulation with internal noise signal and a deviation of 500 kHz


a) Turn the rotary knob and select the "Modulation" block.

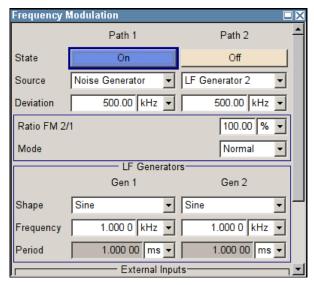
b) Press the rotary knob to open the dialog where the modulation can be selected (different modulation modes are available depending on the options installed).


Turn the rotary knob and highlight "Frequency Modulation".
 Press the rotary knob to open the "Frequency Modulation" dialog.

The internal source is the LF generator 1 by default. This setting is not changed.

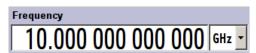

Example of Setup

d) Turn the rotary knob to select parameter "Source", press the rotary knob to open the selection list and select "Noise Generator".

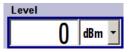

The settings for the noise generator are performed in the "LF Gen./Noise" block. Gauss distribution and full bandwidth (10 MHz) are the default settings for the noise signal.

e) Turn the rotary knob to select parameter "Deviation", press the rotary knob to allow editing and enter the preffered deviation with the aid of the numeric keypad and the unit keys.

Example of Setup


f) Finally, select "State" and press the rotary knob to switch on the FM modulation.

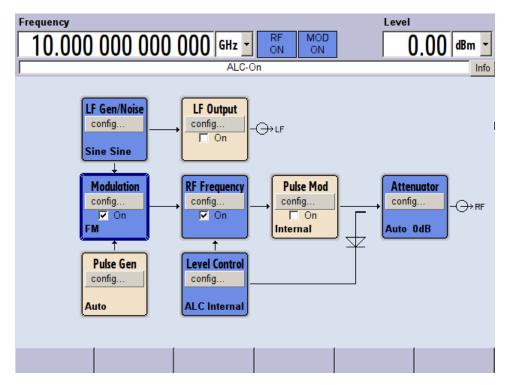
g) Press the DIAGRAM key to display the complete block diagram.


To indicate the active state, the "Modulation" block is displayed in blue. The "RF Frequency" is not yet active, which means that no RF signal is output.

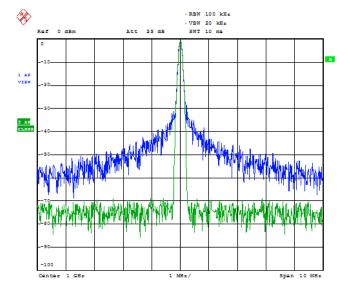
- 3. Set frequency and level and activate RF signal
 - a) Press the FREQ key to activate the editing mode for frequency entry. The "Frequency" entry field in the header section of the display is highlighted.

Enter the frequency of the desired RF carrier using the numeric keypad and terminate the entry by pressing a unit key.

b) Press the LEVEL key and enter the level settings in the same way.



The noise now modulates the RF carrier.


- c) Press the DIAGRAM key to display the complete block diagram.
- d) Turn the rotary knob to select the "RF Frequency" block.
 Press the RF ON/OFF key to activate the "RF Frequency" block.

The FM modulation signal is now present at the RF output. The LF output is not yet activated, i.e, the modulation signal is not output there.

Example of Setup

The graph below shows the FM modulated signal with noise (upper blue trace) and the unmodulated signal (lower greentrace).

Date: 13.DEC.2005 15:15:42

Key Features

4 Manual Operation

The R&S SMF can be operated intuitively either via the interactive block diagram or via a menu tree. All menus are in the form of windows that can be operated in the same way. Rotary knob, keys and softkeys, or alternatively a mouse, allow direct and therefore convenient access to entries and settings.

The clear-cut display shows the current signal generator state. Numerous help functions support the user in signal configuration.

This section describes the concept of manual operation of the signal generator. This includes a description of the general structure of a dialog box, working with dialog boxes and the block diagram and the setting of parameters.

For an in-depth description of the dialog boxes and the instrument functions refer to section "Instrument Functions".

4.1 Key Features

The manual operating concept of the R&S SMF enables the user to make settings as intuitively as possible and at the same time gives a permanent overview of characteristics of the generated signal and of the current instrument state. Numerous online help functions support user settings.

Block diagram

The block diagram is the core of the operating concept.

A graphics display shows the current configuration and the signal flow in the form of a block diagram. All graphical elements can be accessed for operation. An element is selected by means of the arrow keys and the associated setting function is called by pressing Enter. Required menus and graphs are displayed on the block diagram which is displayed again in the foreground whenever the DIAGRAM (CTRL+D) key is pressed.

Permanent frequency and level display

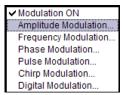
The main characteristics of the RF signal, frequency and level, are permanently displayed in the header section of the screen and can be directly set in the display fields after the FREQ (CTRL+F) or LEVEL (CTRL+L) key is pressed. Status messages for the output signal are displayed in addition to frequency and level.

Operation via Graphical User Interface

Functional blocks

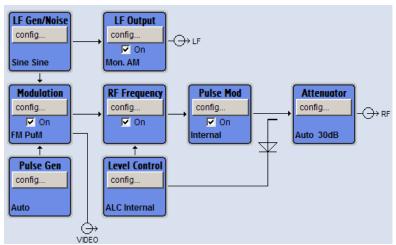
Menus are assigned to the specific function blocks in the block diagram. The function blocks represent elements of signal generation. Function blocks displayed with

Key Features


a blue frame can be directly switched on and off by means of the TOGGLE ON/OFF (CTRL+T) key. The menus of the highlighted function blocks can be called by pressing the ENTER key.

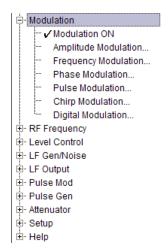
- Example:

The "Modulation" block contains all menus required for modulation signal configuration.



In this block all modulations can be selected.

Signal flow


The signal flow between the function blocks and the employed inputs and outputs are also shown.

Menu tree

The menu tree can be opened and closed with the MENU (CTRL+M) key. The menu tree is organized in the same way as the directories under Windows. The function blocks correspond to the first directory level, the menus to subdirectories.

Key Features

Operation corresponds to the Windows concept

To offer the user a familiar environment, operation is very similar to operation of Windows user interfaces. All menus and tables are made up of known elements, such as selection lists, check boxes and entry fields.

A blue frame indicates that the selected item is active. In the highlighted element, entries can be made.

Rotary knob

Operation is possible via front-panel keys, an external keyboard and the mouse. However, most of the settings can be easily made with the rotary knob:

• Turning the rotary knob shifts the entry focus to the target element.

- Pressing the rotary knob activates the selected entry field.
 Depending on the parameter, the submenu is called, the numeric value varied, the list entry selected or the check box activated or deactivated.
- If a value is entered, the entry is stored by another click on the rotary knob and the editing mode is exited.

Clear settings with the aid of independent subdialogs

A separate window is opened for each dialog and subdialog. The dialogs can be operated independently of each other, i.e. none of the dialogs requires that settings in other dialogs be completed before it can be closed. This ensures flexible operation at all times.

Winbar

The Winbar gives an overview of menus and simplifies their access.

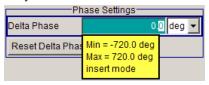
The menus are displayed on top of the block diagram but they can be "hidden" using the DIAGRAM key. They can be displayed again in full size (WINBAR key). This makes room on the screen for other displays that may be required but the setting menus can thus be accessed any time.

Key Features

Keys with assigned simple functions

Most keys on the front panel of the R&S SMF directly perform a simple function.

Since a great number of settings can thus be made by a keystroke, operation is easy. For instance, the CLOSE (ESC) key closes the active menu; with the RF ON/OFF (CTRL+R) key the RF output signal can be switched on or off.


An exception are keys that call a menu such as the MENU (CTRL+M) key which opens the complete menu tree of the instrument, the SETUP (CTRL+E) key which opens the menus for general instrument settings or the FILE (CTRL+S) key which opens the menu for file management.

Help functions for user support

Numerous help functions support the user in signal configuration.

Value ranges

The valid setting range is displayed for each numeric parameter. This requires a short wait after activation of the entry field. The range is then displayed automatically after a few seconds.

If the entered value is outside the permissible range, the next permissible value is automatically set and a message is output.

Context-sensitive help

Context-sensitive help for each parameter can be called with the HELP or F1 key.

Comprehensive online help

Each help page is part of a comprehensive online help function which can be called by means of an index, a content tree or the "Previous/Next" buttons.

Info line with messages for indication of the current instrument state

A great variety of different messages such as status messages, error messages, warnings or information are displayed in the header field of the screen. With the aid of the INFO (CTRL+I) key, help pages can be called for most of the messages. They provide background information on the message and indicate operating steps that may be required. All messages are explained in the online help which can be called with the HELP (F1) key.

Display

4.2 Display

The display shows the current signal generator state and offers graphical elements for direct operation. It is divided into three sections:

- The frequency and level display with info line indicates the main output signal parameters and reports the current state with status, error and warning messages.
- The block diagram shows the instrument configuration, the signal characteristic as well as the inputs and outputs used and permits interactive operation via graphics elements. Active menus and graphs are displayed on top of the block diagram.
- Winbar with labeled softkeys for menu display.

The block diagram in the figure below shows a fully equipped instrument.

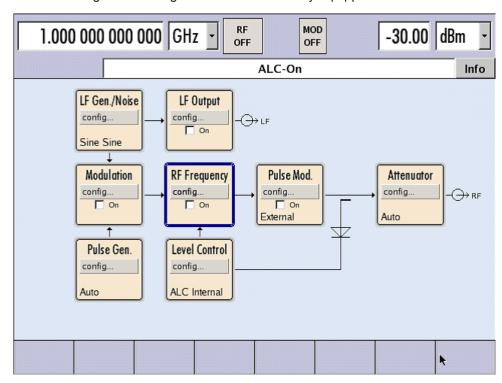


Figure 4-1: Block diagram of a fully equipped R&S SMF

4.2.1 Settings Displayed in the Header Section

Frequency/level settings and a few status messages (see Chapter 4.2.2, "Status Information and Messages", on page 78) are displayed in the header field of the screen. The display may vary depending on the instrument's operating mode:

- In the sweep mode, the current frequency or level of the output signal is displayed. The status message "SweepMode" is displayed in the info line.
- In the list mode, neither the current frequency nor level is displayed, the indication is dimmed.
- If user correction is active, the status message "UCorr" is displayed in the info line.

Display

The values displayed in the "Freq" and "Level" fields include a set offset or multiplier factor.

For more See alos Chapter 5.3.2, "RF Frequency", on page 151 and Chapter 5.4.1, "Overview of RF Level", on page 181.

4.2.2 Status Information and Messages

The instrument indicates status information and messages in the header section of the screen. The messages differ with respect to their importance (errors, warnings, info) and the time of their appearance (brief and permanent messages), and require different treatment

For additional information refer to the info window (see Chapter 4.2.3, "Info Window", on page 79).

Refer to Chapter 9, "Status Information, Error Messages and Troubleshooting", on page 605 for an overview of all status information and messages and corrective actions.

4.2.2.1 Status Information

The status information gives the user an overview of the main operating states and settings of the instrument. The states are indicated for information only and do not necessitate any action by the user.

Status information is displayed between the frequency and level fields, at the left of the info line or in the info line itself.

4.2.2.2 Messages

Messages indicate errors in the instrument. They are displayed in the info line in different colors depending on their importance and display duration. Errors (e.g. no calibration data) are displayed in red, information (e.g. file not found) and warnings in black. Warnings indicate less significant errors (e.g. the instrument operates outside specified data).

4.2.2.3 Volatile messages

Brief messages report automatic settings in the instrument (e.g. switching off of incompatible types of modulation) or on illegal entries that are not accepted by the instrument (e.g. range violations). They are displayed in the info line on a yellow background. They are displayed on top of status information or permanent messages.

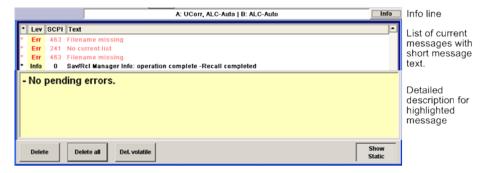
Volatile messages do not normally demand user actions and disappear automatically after a brief period of time. They are stored in the history, however.

Display

These messages can be read from remote using the commands :SYSTem:ERROr[: NEXT]? and :SYSTem:ERROr:ALL?.

4.2.2.4 Permanent Messages

Permanent messages are displayed if an error occurs that impairs further instrument operation, e.g. a hardware fault. The error signalled by a permanent message must be eliminated before correct instrument operation can be ensured.


The message is displayed until the error is eliminated. It covers the status display in the info line. After error elimination, the message automatically disappears and is also recorded in the history.

These messages can be read from remote using the command : SYSTem: SERROr?.

4.2.3 Info Window

A few operating states and the current message are displayed in the info line.

The INFO window with a list of current permanent messages and a detailed description of each message can be opened with the INFO (CTRL+I) key.

The upper section of the info window contains a list of all current permanent messages in the order of their occurrence, i.e. the most recent message is displayed first. In the lower section of the window, additional information on the highlighted message is displayed. A history of all messages that have occurred since instrument switch-on can be called with the "History" key. The most recent message is displayed first.

The messages are color-coded according to their level. Device-specific messages are red, info and remote control error are black. The level is also indicated in the "Lev" column (Err, Sys or Info). Column "SCPI" indicates the SCPI error code.

With the aid of the softkey buttons, error messages can be cleared and a history of all messages called.

Delete

Clears the highlighted message.

This button is available only if the history of the messages is displayed.

Delete All

Clears all messages.

Display

This button is available only if the history of the messages is displayed.

Del. volatile

Clears all volatile messages.

This button is available only if the history of the messages is displayed.

Remote command:

:SYSTem:ERRor:ALL? on page 579

Each time a SYST: ERR: ALL? query is sent, the error queue is returned and at the same time cleared.

History

Calls the list of all messages that have occurred since instrument switch-on. The most recent messages are displayed at the top of the list. When the button is pressed again, the list of current messages is displayed.

Remote command:

```
:SYSTem:ERRor[:NEXT]? on page 581 or :STATus:QUEue[:NEXT]? on page 578
```

Each time a SYST: ERR? or STAT: QUE? query is sent, the oldest entry in the error queue is returned and at the same time cleared in the list.

4.2.4 Block Diagram

The block diagram shows provided options, signal configuration and the currently selected signal flow of the generator with inputs and outputs used. Signal generation can be completely operated from the block diagram. The highlighted function block can be directly switched on and off with the TOGGLE ON/OFF (CTRL+T) key. Pressing the Enter opens the associated setting menu.

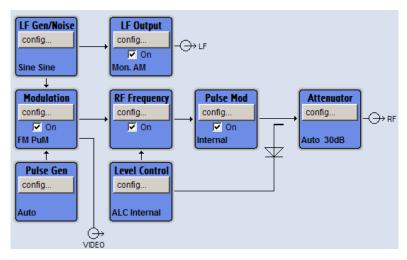
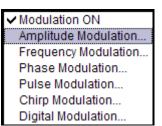


Figure 4-2: Block diagram of the R&S SMF

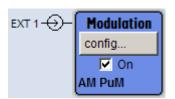
Display


4.2.4.1 Function Blocks in the Block Diagram

Each block represents a function of signal generation. The function is indicated in the headline of the block. In the check box, the respective function can be quickly activated/ deactivated with the TOGGLE ON/OFF (CTRL+T) key. After activation, the block is displayed in blue. Status information is displayed below the check box. It is different for the different blocks.

Pressing the rotary knob (front panel) or the "Config..." button (mouse) opens the associated setting menu.

Example: Modulation block


In this block, the modulation signals are set. The status information of the "Modulation" block indicates the selected modulation.

4.2.4.2 Signal Flow and Input/Output Symbols in the Block Diagram

The input/output symbols in the block diagram show the currently used inputs and outputs of the signal generator. Unused inputs and outputs are not shown. The lines indicate the signal flow.

Symbols and labels refer to the corresponding inputs and outputs on the front and rear panel of the signal generator. The direction - input or output - is indicated by an arrow.

Example:

The symbols indicate the input for the external pulse signal on the instrument rear panel.

4.2.5 Structure of the Dialogs

The parameters are set in the menus. Menus are accessed either via the function blocks in the diagram or by means of the MENU (CTRL+M) key. The menus are displayed on top of the block diagram.

Working with menus and dialog boxes is described in Chapter 4.3, "Accessing Dialogs", on page 82; the setting of parameters in Chapter 4.4, "Setting Parameters", on page 83.

Accessing Dialogs

The menus are in Windows format. The menus differ in details depending on their function but they consist of the same main elements. Each menu consists of a menu header and one or more menu areas with various fields for setting parameters.

The header line contains the name of the menu and the buttons for minimizing and closing the menu. To operate the buttons, use the mouse or the front key CLOSE (ESC).

Several fields of associated but separately set parameters are organized in menu areas. A menu area is framed and labelled with the function common to all parameters.

Example: Pulse Generator

Each of the setting fields is assigned a parameter name. The kind of setting varies depending on the parameter to be set. Some settings can only be made in a specific configuration. If setting is not permitted with the specific configuration selected, the respective item is disabled and displayed in gray and the entry or selection field cannot be accessed.

4.3 Accessing Dialogs

The MENU (CTRL+M) key opens the complete menu tree. Selecting a functional block and pressing the ENTER key opens the menu associated with this block.

An alternatively way to access a dialog is to use the Winbar buttons or front-panel soft-keys or to use the HIDE (CTRI+H), CLOSE (ESC), DIAGRAM (CTRL+D) and REARR (CTRL+A) keys on the front panel.

For a quick access to the dialogs, use one of the following alternative methods.

Displaying the block diagram or a dialog in the foreground

- 1. Press the DIAGRAM (CTRL+D) key to move the cursor to the block diagram.
 All active menus are minimized and displayed in the form of Winbar buttons.
- Press the associated softkey (CTRL+F1 .. F8) to display the dialog in the foreground again.

Accessing the menu tree

▶ Press the MENU (CTRL+M) key to open the complete menu tree.

Calling the File, Setup or Hardcopy dialogs

▶ Use the FILE (CTRL+S), SETUP (CTRL+E) or HCOPY (CTRL+Y) keys to open the respective dialog.

Setting Parameters

Minimizing an active menu

Use the HIDE (CTRL+H) key to minimize an active menu.
It is displayed in the form of a Winbar button.

Automatically arranging displayed menus

▶ Press the REARR (CTRL+A) key to rearrange all open menus so that they overlap as little as possible.

Activating the Winbar

► Use the WINBAR (CTRL+W) key to toggle the cursor between a button of the "Winbar" and the block diagram.

The button that was active last in the Winbar is highlighted.

Closing an active menu

▶ Press the CLOSE key to close an active menu.

Tip: If the cursor is at the highest menu level, you can also use the ESC key to close the active menu.

Accessing the header area

▶ Press the FREQ (CTRL+F) and LEVEL (CTRL+L) keys to activate the "Frequency" or "Level" entry fields in the header area.

Keyboard Shortcuts

Keyboard shortcuts (e.g. "Ctrl + D" for the displaying the block diagram in the foreground) provide direct access to all utility dialogs of the instrument (see Chapter 4.8, "Legend of Front-Panel Controls", on page 97).

4.4 Setting Parameters

The R&S SMF offers several and sometimes alternative possibilities for setting parameters. Operation is possible from the front panel, with the aid of a mouse and/or from a PC keyboard.

The examples whitin this description focus on the operation from the front panel.

Setting Parameters

For more information, refer to:

 Chapter 4.8, "Legend of Front-Panel Controls", on page 97 for an overview of key functions and a cross-reference between the front panel keys and the keyboard shortcuts

section "Instrument Functions" for a detailed description of key functions.

Most of the parameters are set in the different menus. The R&S SMF provides alternative ways for accessing the dialogs. Turn the rotary knob and navigate to the corresponding block in the block diagram and press the knob to open the dialog or perform a mouse click on the "Config..." button.

An exception are the "Setup", "File" and "Hcopy" dialogs. In the "Setup" dialog, general settings are made which are not directly concerned with signal generation, e.g. setting of the GPIB-bus address. In the "File" dialog, files and lists are managed; in the "Hcopy" dialog, printout is configured and hardcopies can be made. These menus can only be called with the SETUP (CTRL+E), FILE (CTRL+S) and HCOPY (CTRL+Y) keys.

Frequency and level are directly set in the header area of the display using the FREQ and LEVEL keys.

Specific settings can also be made directly in the block diagram, e.g. activating a function block by means of the TOGGLE ON/OFF (CTRL+T) key or switching the RF output on and off with the aid of the RF ON/OFF (CTRL+R) key. Changes affecting the signal flow are immediately visible in the graphics display.

This section provides an information about the parameter handling that comprises of the following main steps:

- Chapter 4.4.1, "Working with the Cursor", on page 84
- Chapter 4.4.2, "Selecting a Control Element", on page 85
- Chapter 4.4.3, "Switching Parameters On/Off", on page 85
- Chapter 4.4.4, "Entering a Value", on page 86
- Chapter 4.4.5, "Working with Units", on page 87
- Chapter 4.4.6, "Selecting a Value from a List", on page 88
- Chapter 4.4.7, "Terminating Entries with Confirmation", on page 88
- Chapter 4.4.8, "Restoring the Previous Value", on page 89

4.4.1 Working with the Cursor

After the instrument is switched on, the cursor is always on the first function block of the diagram (default setting).

Moving the cursor on the display

- ► To move the cursor, use one of the following alternative methods:
 - a) Use the rotary knob or the arrow keys.

Setting Parameters

b) Use the appropriate softkeys (CTRL+F1..F8) to move the cursor to the "Winbar".

If the "Winbar" is covered by a menu, press the WINBAR (CTRL+W) key to display it in the foreground.

c) Use the ESC key.

Tip: Be aware that the function of the ESC key depends on the current cursor position.

The function of this key depends on the current cursor position.

- Calls the next higher selection level.
- Closes the open window without accepting new entries; the old value or parameter is retained.
- In dialog boxes that contain a "Cancel" button it activates that button.
- Closes all kinds of dialog boxes, if the edit mode is not active.
- Quits the edit mode, if the edit mode is active.
- Switches between different entry fields of a menu.
- Shifts the entry cursor from the header display to the previously active menu, or to the previously highlighted block in the block diagram if no menu is active.

Moving the coursor to the heading area

Press the FREQ (CTRL+F) or LEVEL (CTRL+L) key to move the cursor to the header area.

4.4.2 Selecting a Control Element

Control elements are always selected in the same way no matter whether a function block in the diagram, a menu in the menu tree, a parameter in the menu or an entry in a list or table is concerned.

► To activate an element, put the cursor on it.

An active element is highlighted by a blue frame.

4.4.3 Switching Parameters On/Off

A parameter can be activated and deactivated using a button or a check box.

- 1. Select the parameter.
- 2. To change the state of a parameter, use the "Enter" function of the different control media:
 - Press the rotary knob
 - Press ENTER

Setting Parameters

Press the TOGGLE ON OFF (CTRL+T) key.

Colour and label of a button change, the check box is ticked or the tick is removed.

4.4.4 Entering a Value

Numeric and alphanumeric values can be edited in the entry fields. In the editing mode, cursors of different colour are used. A blue cursor indicates the overwrite mode, a green cursor the insert mode.

Numeric and alphanumeric values can either be newly entered or the existing value can be changed. Incorrect entries are cleared with the BACKSPACE key.

Entering a new numerical value

- 1. Select the parameter.
- 2. Press a numeric key to activate the editing mode.

The previous value is cleared and the new value can be entered.

Editing a value in the insert mode (default setting)

- Press the rotary knob (= Enter) to activate the editing mode.
 If the cursor is placed at the right of the total value, the insert mode is always active.
- 2. Set the cursor to the left of the number to be changed using the LEFT/RIGHT arrow keys.

The cursor is displayed in green.

3. Click on a numeric key to insert a new value.

Editing a value in the overwrite mode

- 1. Activate the editing mode.
- Set the cursor on the numeric digit to be changed using the LEFT/RIGHT arrow keys.

The cursor is displayed in blue and the number to be replaced is highlighted.

3. Click on a numeric key to overwrite the highlighted value.

Varying a value

- 1. Activate the editing mode.
- 2. Set the cursor to the left of the number to be changed using the LEFT/RIGHT arrow keys.

Setting Parameters

The value at the cursor position is varied.

3. To vary the selected value, use the UP/DOWN arrow key or turn the rotary knob.

The value is increased or decreased.

Entering a new alphanumerical value

- 1. Select the parameter.
- 2. Press an alphanumeric key to start the editing mode.

The new value is entered.

Editing an alphanumerical value

An existing value, e.g. a file name, can be changed in the insert mode (see example) or in the overwrite mode.

- 1. Select the paramter and activate the editing mode.
- Set the cursor to the left of the alphanumerical value using the LEFT/RIGHT arrow keys.

Tip: If hexadecimal values are to be entered, the numeric front-panel keys are automatically changed to hexadecimal values.

3. Click on an alphanumeric key to insert a new alphanumerical value.

Terminating the entry of a numeric value

To terminate the entry of a numeric value:

- 1. Press the rotary knob (= Enter).
- 2. Press a UNIT key on the front panel.
- 3. Select a "Unit" in the selection field next to the parameter value.

4.4.5 Working with Units

The unit of a parameter is displayed next to the value. When the parameter is edited, the unit is selected either from the list or by means of the front-panel keys. When the entry is completed, the unit can be changed. In this case the value remains unchanged but is automatically adapted to the new unit.

While operating the instrument by means of a mouse, assign the unit to the selected parameter before entering its value.

Assigning a unit

To assign a unit to a value, use one of the following alternatives:

1. Press a UNIT key on the front panel.

Setting Parameters

Select a "Unit" in the selection field next to the parameter value. Press the ENTER key.

The unit displayed in the entry field next to the value is assigned.

Changing a unit

To subsequently change a unit, i.e. after the entry has been terminated and when the editing mode is not active, use one of the following alternatives:

- 1. Press a UNIT key on the front panel.
- 2. Select"Unit" in the selection field next to the parameter value.

The value remains unchanged but the display is automatically adapted to the new unit, i.e. the value is recalculated to suit the new unit.

The new unit is indicated in the value field of the menu.

4.4.6 Selecting a Value from a List

Selection lists provide a list of predefined values for the selected parameter.

To select a item from a list, proceed as follow:

- 1. Press ENTER key to open the list.
- Use one of the following alternatives to navigate through the list:
 - a) Turn the rotary knob or use the UP/DOWN arrow keys.
 The selected item is highlighted.
 - b) Press TOGGLE ON/OFF key several times until the preferred entry is displayed in the selection field.
- 3. To confirm the selection, press the ENTER key.

4.4.7 Terminating Entries with Confirmation

The instrument behaves different by the termination of entries deppending on the parameter type and the way this parameter is set.

Setting Parameters

Confirming settings

To confirm the settings, press the rotary knob or one of the UNIT keys (see also Chapter 4.4.5, "Working with Units", on page 87).

Note: Variations by means of the rotary knob are immediately set.

Confirming multiple values

In some cases, like for instance when editing data in a user correction table, it is useful first to enter few values and to confirm them together. Such settings require additional confirmation. Not yet confirmed settings are displayed on a yellow background as an indication that the currently displayed values do not represent the target signal.

▶ To confirm these settings, select the "Save" or "Accept" button, respectively.

Confirming parameters with On/Off state

Most of the instrument functions with enabled and disabled states are calculated and effective only after this functions have been enabled. However, there are functions like the frequency variation of the reference oscillator for instance, that are immediately set after confirmation.

► To confirm a parameter with On/Off state, enable the parameter.

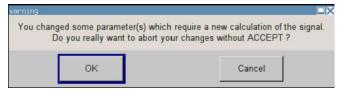
4.4.8 Restoring the Previous Value

Parameter variations with the rotary knob are immediately set and therefore not reversible.

Normally, values cannot be restored in the case of mouse control because no explicit confirmation is required in this case and entries are automatically confirmed when the entry or selection field is exited.

Restoring values

In the case of front-panel control or operation from the keyboard, previous values can be restored as long as the new value is not confirmed, i.e. the entry is not completed.


► To restore the values, press the ESC key.

Restoring values that require confirmation

All settings that are not confirmed with the "Accept" button but require this additional confirmation can be restored.

1. Press the ESC key.

A confirmation query is displayed.

Editors

Confirm with "OK" to abort the changes.
 Select "Cancel" to return to the dialog. The previous selected settings are displayed.

Restoring values after an extended calculation has been started

Calculation and setting might require different period of time. Many settings are made without noticeable calculation times; such operations are indicated by a "BUSY" message displayed in the status field of the header section.

A window with a progress indicates that the instrument performs an extended calculation that requires longer calculation time. The termination of such a calculation restores the previous values.

Press the ABORT button to terminate the calculation.

All previous values are restored.

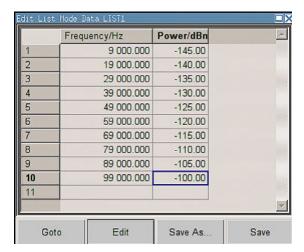
4.5 Editors

The R&S SMF provides user-friendly editors for defining lists. Lists containing frequency and level value pairs are used for the list mode and the user-defined level correction.

The lists are saved to files and may thus have any length. The file name of the lists and the directory to which the files are saved are user-selectable. The file prefix is different for each list type and is permanently assigned by the system.

For information about file handling and overview of the automatically assigned file prefixes, refer to Chapter 4.7, "File Management", on page 93.

4.5.1 Working with List Editor


The "User Correction" and "List Mode" dialogs provide a list editor for defining the frequency/level value pairs.

Editing list mode data lists

To access a list editor and open an existing data list for editing, use the cursor keys
to select the associated button "Edit User Correction Data..." or "Edit List Mode
Data..." (if available) in the individual menu.

The selected list is displayed and the cursor marks the first row of the "Frequency/Hz" column.

Editors

If no list has been selected, a blank list of only one row is displayed.

- 2. Press the LEFT/RIGHT arrow keys to change between the colums. Use the UP/DOWN arrow keys to mark a row.
- Use the numeric keys to enter the value for the value pairs in the "Frequency/Hz" and "Power/dBm" table columns. A blank row is inserted at the end of the list. Terminate the entry by pressing a UNIT key.
- 4. To select a row, select the "GoTo" button and press the ENTER key.

 Use the numeric keys to enter the row index in the entry field and press the ENTER key to confirm the entry.

The cursor moves to the selected row.

5. To insert a new row in the table, select the row above which the new row is to be inserted and select "Insert Row(s)".

A row is inserted above the currently marked row. If no row has been selected, a row is inserted at the beginning of the list.

6. Use the "Save"/"Save As..." function to save the edited list under its current name or under a new name.

Enter the file name in the "File Select" dialog and select the directory (see Chapter 4.7.1, "File Select Dialog", on page 95).

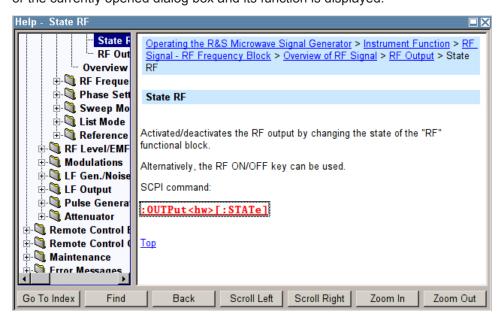
Only complete value pairs are taken into consideration; rows containing an entry in only one column are ignored.

Creating a new list mode data list

A new list can be created under a new name either by generating a blank file in the "File Select" menu (see section Chapter 4.7, "File Management", on page 93) or by changing an existing list which will then be saved under a new name.

 To create an empty data list, select "RF > List Mode > List Mode Data... > New List" or respectively "RF > User Correction > User Cor. Data... > New User Correction Data" and enter the file name of the new data list.

How to Use the Help System


2. To open the data list for editing, select the associated button "Edit User Correction Data..." or "Edit List Mode Data..." in the individual menu. Edit the list and save it under a new name.

4.6 How to Use the Help System

The R&S SMF is equipped with a context-sensitive help function. A help page is available for each parameter and can be called any time during instrument operation.

Calling context-sensitive and general help

► To display the general help dialog box, press the HELP (F1) key.
The help dialog is displayed. A topic containing information about the current menu or the currently opened dialog box and its function is displayed.

Contents of the help dialog box

The help dialog box contains two main areas:

- "Contents" contains a table of help contents
- "Topic" contains a specific help topic

The help system provides additionally an "Index" and a "Find" area, as well as "Zoom" functions that are accessed by means of the corresponding buttons.

Navigating in the table of contents

- 1. To navigate within the table of contents entries, use the UP/DOWN keys. Entries that contain further entries are marked with a plus sign.
- 2. To display a help topic, press the "ENTER" key.

File Management

The corresponding help topic is displayed.

Navigating in the help topics

- 1. To scroll through a page, use the UP/DOWN arrow keys.
- 2. To follow a cross-reference, select the link text.
- To return to the previous page, select "Back".
 This function scrolls back all steps that you have performed before.
- 4. Use the "Scroll Right" or "Scroll Left" buttons to shift the indicated area of the navigation window to the left or right.
- 5. To maximize the "Topics" window, you can hide the contents tree with the "Hide Contents" button, and vice versa.

Using the Index

- 1. Select the "Go to Index" button.
- 2. Enter the first characters of the topic you are interested in. The entries starting with these characters are displayed.
- 3. Press the ENTER key to change the focus.
- 4. Use the UP/DOWN keys to navigate and select the suitable keyword.
- 5. Press the ENTER key to display the help topic.

The corresponding help topic is displayed.

Closing the help window

Press the HELP (F1) key.

4.7 File Management

The R&S SMF uses files to save all instrument data, i.e. system and user data.

The user data includes saved instrument settings and lists and the user correction.

The files are stored on the CompactFlashTM card of the instrument. The /var directory can be used to save user-defined data; any subdirectory structure can be created on /var. Some default subdirectories are predefined, but can be changed at any time.

The /opt directory is a protected system drive and therefore unaccessible system directory. The files on this directory contain data that must not be changed. Therefore, this drive should not be accessed, since reconstruction of the system partition will lead to data loss. To prevent inadvertent deletion or overwriting of system files, this drive is not specified in the file menus.

Files can be exchanged either via a memory stick or a connected network. A memory stick is connected to the USB interface and is assigned the <code>var/usb/</code> drive. In the

File Management

case of a connected network, all network drives that can be accessed are available. The files are accessed in a "Save/Recall" dialog in the individual menus.

The files are differentiated according to their extensions; each type of file is assigned a specific file content. The extension is usually of no consequence to the user since access to the files occurs in the individual menus where only the relevant type of file is available. See Chapter 4.7.2.1, "Extensions for User Files", on page 97 for an overview of the supported file extensions.

The user data can be roughly divided into the following data types:

- Settings
 Instrument settings can be saved and loaded. In case of saveing, the current setting is saved to the specified file.
 - Lists
 Lists, e.g. user correction lists, can be loaded. They can be generated either externally or internally. For internal generation, a new list must be created in the "File Select" dialog which will then be edited in the list editor of the individual menu.

For more information, refer to:

- Chapter 4.8, "Legend of Front-Panel Controls", on page 97 for an overview of key functions and a cross-reference between the front panel keys and the keyboard shortcuts
- to section "Instrument Functions" for a detailed description of key functions.

Accessing files with user data

1. To access an editable user data file, select the "Save/Recall" or "File Manger" function in the individual dialog.

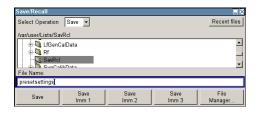
2. To access a loadable data file, select the "Select/New" or "File Manager" function in the individual dialog.

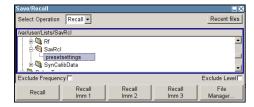
 To access the "File Manager" function, press the SETUP (CTRL+E) key and select "Save/Recall > File Manager".

A "File Select" window for loading, saving or creating a file or the "File Manager" dialog for managing all files is displayed.

File Management

Saving and loading of all instrument settings


All instrument settings are saved and loaded in the "File" menu.


To access the "File" menu, press the FILE (CTRL+S) key.

For more information, see Chapter 5.2.8, "Storing and Loading Instrument Data - File Key", on page 141.

4.7.1 File Select Dialog

The "Save/Recall" dialaog displays the available drives and directories. In the upper part, "Recent Data Sets", the files last used are listed.

The available drives and directories and the files of the selected directory are displayed. The currently selected path is displayed above the window. Only the relevant files without file extensions are displayed. If the area is opened several times, the path last selected is displayed. When a file is saved or created, its name is user-selectable; the extension is assigned automatically and cannot be entered. The file is saved to the selected path.

In addition to the files saved by the user, some menus also offer files containing predefined contents. These files are saved to a specific directory on system drive; for this reason, this directory cannot be chosen from the "File Select" menu.

Working with the File Select dialog


- 1. Access the "File Select" dialog (see "Accessing files with user data" on page 94).
- 2. Navigate in the "File Select" dialog.
- Load an existing file.
 In the "Recall Settings" dialog, mark a file and press the "Select" button.
- Save a file.
 In the "Save Settings" dialog, enter file name in the "File Name:" field.
 Select the directory to which the file is to be saved and then select the "Save" button.
- Create a new file.
 To create a new file, use the "Save Settings" functionality, i.e. specify file name and directory and save the file.

File Management

The created file is empty; it must be filled with the necessary values in the individual editor.

4.7.2 File Manager

The "File Manager" allows general file management such as copying, shifting, renaming and deleting files as well as generating new directories.

Use the "File Type" to select a file type from the list. This can be used to process either all files (all files (*) selection) or a specific selection of files. See Chapter 4.7.2.1, "Extensions for User Files", on page 97 for an overview of the supported file extensions. The available drives and directories and the files of the selected directory are displayed. The currently selected path is displayed above the windows. If the area is opened several times, the path last selected is displayed. Unlike the "File Select" window, the "File Manager" displays the full file names including extensions.

Working with the File Manager dialog

- Accessing the "File Manager" dialog (see "Accessing files with user data" on page 94).
- 2. Navigating in the "File Manager" dialog.

 Operation is very similar to the operation of a standard Windows explorer.
- 3. Moving, duplicating, deleting or renaming files To move a file, select the file and press the "Cut" button. Mark the directory to which the file is to be moved and select the "Paste" button. If the target directory already contains a file with the same name, a confirmation query is displayed to confirm overwriting of this file.
 - Perform the similar steps and cut/copy/rename/delete the file.

Tip: The operation corresponds to the Windows concept.

4. Creating a new directory

Mark drive or directory level where the new directory is to be created, select the "Create New Directory" button and enter the name of the new directory in the entry window that opens. Confirm with ENTER.

Legend of Front-Panel Controls

4.7.2.1 Extensions for User Files

The following table lists all available file extensions for user files. The currently available files on the instrument depend on the installed options.

Table 4-1: List of the automatically assigned file extensions in the instrument

Function	List type	Contents	File suffix
Instrument State	Settings	Instrument settings	*.savrcltxt
"User Correction"	List	User-defined level correction values	*.uco
		Export Data	*.txt Or *.csv
"List Mode"	List	User-defined frequency/level value pairs	*.lsw
		Export Data	*.txt Or *.csv
"Pulse Train List"		User-defined offtime/ontime/repetition values	*.pulstrn
ARB Waveform		ARB Waveform	*.WV
SMZ Settings	Settings	Data (firmware) of a connected SMZ frequency multiplier	*.efmfirm
NRP Settings	Settings	NRP Settings	*.nrp

4.8 Legend of Front-Panel Controls

The following table lists all key functions available on the front panel. Key combinations used on the PC keyboard to trigger key functions on the instrument front panel are also described. Keyboard labels are described in alphabetical order.

In addition, a front panel key emulation and an on-screen keyboard can be used for manual operation by mouse only.

Table 4-2: Cross-reference between the front panel keys and keyboard shortcuts

Front-panel key	Key of PC keyboard	Function
Turning the rotary knob	Tab key (towards the right) Shift + Tab (towards the left)	Sets the cursor with the rotary knob.
Pressing the rotary knob	Enter	Pressing the rotary knob confirms an entry; it has the same function as the ENTER key.
Arrow keys	Arrow keys	Moves the cursor.
*1 / dB(m)	ALT + F12	Confirms entries in the base unit and values without a unit.
		Selects dBm for the RF level and dB for level offset and level step width.
. / *#	. / *#	Enters a period/decimal point. Enters a special character.

Legend of Front-Panel Controls

Front-panel key	Key of PC keyboard	Function
- / A<->a	- / (shift+) a—z	Enters the sign. Switches between upper-case and lower-case letters.
0-9 / az	CTRL+ 0-9 / az CTRL	Enters the number/letter.
BACKSPACE	Backspace	Clears the last entry (number, sign or decimal point)
CLOSE	CTRL + G	Closes an active menu.
DIAGRAM	CTRL+ D	Sets the cursor on the block diagram and hides all menus.
ENTER	Enter	Terminates an entry.
ESC	ESC	Selects the next higher menu/selection level. When the editing mode is exited with ESC, the previous value is restored.
FILE	CTRL + S	Activates the menu for storing instrument settings.
FREQ	CTRL+ F	Activates the frequency entry.
G/n / dBuV	ALT + F9	Selects the unit Giga/Nano, dBuV for the RF level and dBu for the LF level.
HCOPY	CTRL+ Y	Opens the menu for configuring and starting a hardcopy.
HELP	F1	Opens/closes context-sensitive help.
HIIDE	CTRL+ H	Minimizes the active menu. Pressing the respective button in the Winbar opens the menu again.
INFO	CTRL + I	Opens/closes the info window
INSERT	Ins	Activates the insert mode.
k/m / mV	ALT + F11	Selects the units kilo/milli and mV for RF levels.
LEVEL	CTRL + L	Activates the level entry.
LOCAL	CTRL + Q	Switches the instrument from remote control to manual control.
M/u / uV	ALT + F10	Selects the units Mega/Micro and uV for RF levels.
MENU	CTRL + M	Calls the menu selection list.
MOD ON/OFF	CTRL + O	Switches modulation on/off. "MOD OFF" is indicated in the status line.
ON/OFF TOGGLE	CTRL + T	Switches a block or parameter on/off.
		Toggles between the different possibilities of setting a selection parameter.
PRESET	CTRL + P	Restores a defined basic instrument setup.
REARR.	CTRL + A	Adjusts the size of the active dialog to use the whole height of the display.
RF ON/OFF	CTRL + R	Switches the RF output signal on/off. "RF OFF" is indicated in the status line.

Legend of Front-Panel Controls

Front-panel key	Key of PC keyboard	Function
SETUP	CTRL + E	Opens the setup menu for general instrument settings.
Softkeys	CTRL + F1 – F8	Triggers the function assigned to the softkey.
STATUS	CTRL +	Indicates the instrument status.
WINBAR	CTRL + W	Toggles between the active menus.

4.8.1 Front Panel Key Emulation

The R&S SMF provides a front panel key emulation to enable execution of the front panel key functions by mouse e.g. for remote access. The emulation is called by a right mouse click. The front panel key functions are executed by a mouse click on the associated button.

Legend of Front-Panel Controls

Overview of Instrument Functions

5 Instrument Function

5.1 Overview of Instrument Functions

This chapter explains the functions of the R&S SMF and the options available in the setting menus. The associated SCPI command is specified for each parameter (where applicable).

The description starts with the general instrument settings which do not directly affect signal generation. The majority of these settings can be accessed by means of front-panel softkey menus and not by means of function block menus.

The signal generation functions are then described, beginning with the functions which affect the RF signal ("RF Frequency" block), the level control ("Level Control" block), and the analog and digital modulations ("Modulation" block). The next section describes the LF signal generation ("LF Gen./Noise" block) and the LF output ("LF Output" block). This is followed by an description about the configuration of the internal pulse generator ("Pulse Gen." block) and the modulation of the internal or external pulse signal ("Pulse Mod." block). The remaining part of this chapter describes the attenuator settings ("Attenuator" block).

The general instrument settings include various functions, such as:

- Setting a defined basic setup using the PRESET key see Chapter 5.2.2, "Default Instrument Settings - Preset Key", on page 103
- Switching from remote control to manual control using the LOCAL key see Chapter 5.2.4, "Switching to Manual Control - Local Key", on page 135
- Configuring the generator and its interfaces in the "Setup" dialog e.g. setting the GPIB address, starting an adjustment, querying instrument data see Chapter 5.2.3, "General Configuration of Instrument - Setup Key", on page 104
- Generating a hardcopy of the display using the HCOPY key see Chapter 5.2.5, "Generating a Hard Copy of the Display", on page 136
- Calling up the online help using the HELP key see Chapter 5.2.7, "Help System - Help Key", on page 139
- Querying messages using the INFO key see Chapter 5.2.6, "Messages - Info Key", on page 139
- Loading and storing complete instrument settings in the "File" menu
 see Chapter 5.2.8, "Storing and Loading Instrument Data File Key", on page 141

The RF signal and the reference oscillator are configured in the "RF Frequency" function block:

- CW mode see Chapter 5.3.1, "Overview of RF Signal", on page 149
- List mode see Chapter 5.3.6, "List Mode", on page 172
- Frequency and Level Sweep mode

Overview of Instrument Functions

```
see Chapter 5.3.5.1, "Overview", on page 161
```

 Reference Oscillator see Chapter 5.3.4, "Reference Oscillator", on page 157

The RF level control is configured in the "Level Control" function block:

- RF Level see Chapter 5.4.1, "Overview of RF Level", on page 181
- RF Level Sweep see Chapter 5.4.4, "RF Level Sweep", on page 186
- ALC see Chapter 5.4.5, "Automatic Level Control - ALC", on page 194
- Power Sensors see Chapter 5.4.6, "Power Sensors", on page 197
- User Correction see Chapter 5.4.7, "User Correction", on page 247

The analog and external digital modulations are activated in the "Modulation" function block:

- Amplitude Modulation see Chapter 5.5.2, "Amplitude Modulation (AM)", on page 259
- Frequency Modulation see Chapter 5.5.3, "Frequency Modulation (FM)", on page 261
- Phase Modulation see Chapter 5.5.4, "Phase Modulation (PhiM)", on page 264
- Digital Modulation see Chapter 5.5.5, "Digital Modulation", on page 267
- Pulse Modulation see Chapter 5.5.6, "Pulse Modulation (PM)", on page 269

The internal LF generators, the LF frequency sweep, and the noise generator are configured in the "LF Gen./Noise" function block:

- LF Gen./Noise see Chapter 5.6.1, "LF Gen./Noise", on page 276
- LF Frequency Sweep see Chapter 5.6.1.3, "LF Frequency Sweep", on page 280
- The LF output is configured in the "LF Output" block, see Chapter 5.6.2, "LF Output", on page 288.
- The pulse generation is configured in the "Pulse Gen." block, see Chapter 5.6.3,
 "Pulse Generator", on page 297
- The attenuator is configured in the "Attenuator" block, see Chapter 5.7, "Attenuator", on page 305

General Instrument Settings

5.2 General Instrument Settings

5.2.1 Overview of General Instrument Settings

This section describes the settings which do not directly affect signal generation. Most of these settings can only be accessed by means of menus which are opened using keys or key combinations on the external keyboard or keys on the front panel key emulation.

The general instrument settings therefore affect various functions, such as storing instrument settings using the FILE key or setting the GPIB address in the menu of the SETUP key. The order in which the descriptions are given corresponds to the layout of the keys on the front panel of the R&S SMF (from top left to bottom right).

5.2.2 Default Instrument Settings - Preset Key

The PRESET key performs a defined instrument setup. All parameters and switching states are preset (also those of inactive operating modes). The default instrument settings provide a reproducible initial basis for further settings.

However, functions concerning the integration of the instrument in a measurement setup are not changed, for example the GPIB address or reference oscillator settings.

When the instrument is switched on, it is not the preset state that is active, but rather the instrument state that was set before the instrument was switched on.

User-defined instrument states can be accessed and stored in the "File" menu.

Resetting the instrument to the factory state is possible with the Factory Preset function.

Preset

Presets all parameters and switching states.

The following list gives an overview of the presets for the most important generator settings. The other presets can be found in the preset tables of the individual menus and the information accompanying the remote commands.

- "RF frequency" = 1 GHz
- "RF level" RF output switched off
- "Offsets" = 0
- "Modulations State" = Off
- Uninterrupted level settings are switched off "Level Attenuator Mode" = AUTO
- Internal level control "Level ALC" = AUTO
- User correction "Level Ucor" = OFF
- "LF output State" = Off
- "Sweep State" = Off
- "List mode State" = Off

General Instrument Settings

Settings that are not affected by the PRESET key

- Reference frequency settings ("Ref Oscillator" menu)
- Power on settings ("Level/EMF" menu)
- Network settings ("Setup" menu)
- GPIB address ("Setup" menu)
- *IDN? Identification and emulation ("Setup" menu)
- Password and settings protected by passwords ("Setup" menu)
- Start/Stop Display Update ("Setup" menu)
- Display and keyboard settings ("Setup" menu)

Remote command:

*RST on page 356

5.2.3 General Configuration of Instrument - Setup Key

The "Setup" menu provides access to basic instrument settings, regardless of the currently set operating mode or measurement. It contains information on the insstrument's equipment, and comprises all settings for the general configuration of the instrument and its interfaces.

To access the "Setup" menu, press the SETUP key.

The "Setup" menu is divided into functional sections as follows:

- "System": covers general instrument parameters.
- "Test": used to perform function tests.
- "Environment": used to configure the controller interfaces.
- "Remote": used to configure the remote control interfaces.
- "Protection": used to set the protection level for service functions and security settings.
- "Settings": used to save or recall instrument settings or to preset the instrument to factory settings.

Most submenus of this key can be accessed only via the SETUP key or the menu tree (MENU key), with the following exceptions:

- The "Reference Oscillator" dialog can also be accessed in the "RF" block and is therefore described in the section on this block (see Chapter 5.3.4, "Reference Oscillator", on page 157).
- The "Save/Recall" dialog can also be accessed with the FILE key and is therefore
 described in the section on this key (see Chapter 5.2.8, "Storing and Loading
 Instrument Data File Key", on page 141.

5.2.3.1 Internal Adjustments

The R&S SMF is extremely accurate due to the integrated adjustment procedures, which you can execute directly on the instrument.

General Instrument Settings

Self-calibration routines that do require additional (external) measurement equipment are either described in the Service Manual of the instrument, or they require to be performed by a Rohde & Schwarz service center.

NOTICE

Risk of invalid adjustment

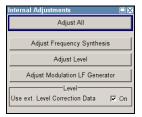
In order to achieve correct adjustment of the instrument, make sure that the instrument is warm before performing adjustments. The warm-up time is 30 minutes.

When to perform adjustments?

It is recommended to perform internal adjustments prior to any application that requires a maximum of level and frequency accuracy, especially when a long period of time has passed or if the ambient temperature of the instrument significantly differs from the one of the last adjustment.

Additional Information to the Adjustments

During adjustments, a progress indicator shows the status of the process. If any error occurs, the process aborts and an error message appears in the info line.


The extent of the adjustments depends on the installed options.

NOTICE

Risk of damage to the DUT

High power at the RF output may destroy a connected DUT (**D**evice **U**nder **T**est). During level adjustment, instruments without step attenuator (R&S SMF-B26 or R&S SMF-B27) temporarily apply high power at the RF output. This may damage the DUT. Therefore it is required that the RF connector is terminated during adjustment. Disconnect the DUT and replace it by a 50 Ohm terminating resistor.

► To access the settings for internal adjustments, press the SETUP key and select "System > Internal Adjustments".

In this dialog you can perform internal calibration routines.

The remote commands required to define these settings are described in Chapter 7.4, "CALibration Subsystem", on page 360.

General Instrument Settings

Adjust All

Performs all available internal calibration routines of the instrument.

Remote command:

```
:CALibration<hw>:ALL[:MEASure]? on page 360
```

Adjust Synthesis

Performs all adjustments which affect the frequency.

This includes adjustment of option R&S SMF-B20, AM/FM/SCAN modulator, LF and Low Phase Noise.

Remote command:

```
:CALibration<hw>:FREQuency[:MEASure]? on page 360
```

Adjust Level

Performs all adjustments which affect the level. The acquired correction values improve the settling time and the signal quality.

Remote command:

```
:CALibration<hw>:LEVel[:MEASure]? on page 361
```

Adjust Modulation LF Generator

Performs all adjustments that affect the internal modulation generators.

Remote command:

```
:CALibration:LFOutput[:MEASure]? on page 362
```

Use ext. Level Correction Data

Switch on or off use of external level correction data. This switch can be used in case of corrupt external level correction data.

By default the instrument uses correction data obtained in the factory before delivery. In addition, customer data can be used for external level correction. The customer data is obtained using a R&S NRP power sensor. External level correction is a protected function (see service manual, chapter 2, "Adjustment").

Remote command:

```
:CALibration<hw>:LEVel:STATe on page 362
```

Use ext. Loop Gain Correction Data

Switch on or off use of external loop gain correction data.

This feature is a protected function (see service manual, chapter "Adjustment").

Remote command:

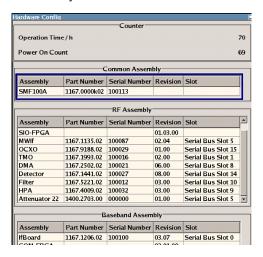
```
:CALibration<hw>:LEVel:LOOPgain:STATe on page 361
```

Continue Adjustment On Error

Continues the internal adjustment automatically after an error was detected. By default, internal adjustment stops on error (see service manual, chapter "Adjustment").

This function is a protected function and can be accessed if protection level 1 is disabled.

Remote command:


n.a.

General Instrument Settings

5.2.3.2 Hardware Config

In the "Hardware Config" dialog, the installed assemblies together with their variants and revision states can be displayed for servicing purposes.

To open the "Hardware Config" dialog, select "System" and press the SETUP or MENU key.

Section "Counter" in the upper part of the menu shows the "Operation Time" (in hours) and the number of power-on ("Power On Counter").

The second part of the menu is a table that lists the installed assemblies. It is divided into the sections:

- "Common Assembly"
- "RF Assembly"
- "Baseband Assembly"

Operation Time / h

Displays the operation time in hours.

Remote command:

:DIAGnostic:INFO:OTIMe? on page 364

Power On Count

Displays the number of power-on.

Remote command:

:DIAGnostic:INFO:POCount? on page 364

Assembly

The tables list the installed assemblies.

"Assembly" Assembly name

"Part Number" Part Number of assembly

"Serial Number"

Serial Number of assembly

"Revision" Revision state of assembly

General Instrument Settings

b

Indicates whether the assembly is connected to the serial bus or PCI bus.

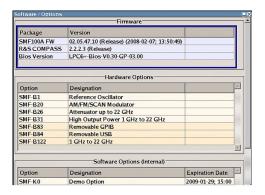
Remote command:

:DIAGnostic<hw>:BGINfo? on page 363

5.2.3.3 Software / Options

"Slot"

The "Software/Options" dialog shows the firmware version of the instrument software as well as all installed hardware and software options.


Software options purchased at a later stage can be activated with a keycode. The activation code is supplied with the software option. How to install options is described in Chapter 4 of the Service Manual (supplied with the instrument).

The installation of hardware options purchased at a later stage is also described in Chapter 4 of the Service Manual (supplied with the instrument). Most hardware options need to be installed at an authorized Rohde&Schwarz service shop.

To access the "Software/Options" dialog, select "System" and press the SETUP or MENU key.

The menu is devided into the following sections:

- "Firmware"
- "Hardware Options"
- "Software Options"

Firmware

The Firmware section of the menu shows the firmware version and the version of the software platform.

Note: Your instrument is delivered with the latest firmware version available. Firmware updates as well as the Release Notes describing the improvements and modifications are provided on the Internet at the download site of the Rohde & Schwarz Signal generator home page. This home page always offers the latest information on your signal generator, e.g. also on changes of the firmware update procedure.

Remote command:

n.a.

General Instrument Settings

Hardware Options / Software Options

The tables in the sections "Hardware" and "Software" list the installed hardware and software options.

"Option" Short name of option

"Designation" Name of Option

"Expiration Date"

For regular options, "Permanent" is indicated in this column. Some options are available as trial versions. This column shows their expiration date. After this date, the option is no longer available on the instrument.

Remote command:

*OPT? on page 355
*IDN? on page 355

Loaded Modules

Section "Loaded Modules" is provided for service purposes. It lists all loaded software modules with their versions and offers a short description of each module.

Remote command:

n.a.

5.2.3.4 Manage License Keys

This dialog is the central dialog for managing licenses, like enabling newly purchased and/or newly registered options or performing the required instrument related steps during the process of unregistration of licenses.

An option is ready to operate after it is enabled by means of a license key code supplied with the option. The license key is delivered as a file or on paper. Unregistered licenses must be registered for a particular instrument prior to the corresponding option can be enabled for operation.

General Instrument Settings

License Registration

If your purchased license is delivered unregistered, you must register it before you can activate the option.

For detailed information about the license registration, refer to the installation instructions provided with the option (Supplement A) and the documentation of the online tool "Manage Licenses" (https://extranet.rohde-schwarz.com/service).

Only if the R&S SMF is equipped with an older firmware version, a firmware update prior to enabling the software option may be required. The information on the valid firmware versions for the purchased software option is provided together with the option.

The firmware update is described in the service manual, chapter 4.

Device ID

Displays the instrument specific identification number. The device ID is an unique string with the following structure:

<stock number>-<serial number>-<checksum>

Enter License Key

Type here the license key provided with the option.

For license keys delivered as a file, use Import License Key from File....

Import License Key from File...

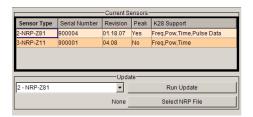
Opens a dialog for selecting the file with the license key.

Export Deactivation Response to File...

Exports the generated deactivation response key to a file and opens a file management dialog to save the file. This key is required during the unregistration process.

Status Information

Displays status information.


5.2.3.5 NRP-Z Info/Update

The "NRP-Z Info/Update..." dialog covers information on connected power sensors, like serial number, revision state and features of the particular sensor. You can directly perform an update of the sensor firmware.

Additionally, the dialog supports some special features in terms of support of the R&S SMF-K28 Power Analysis option.

General Instrument Settings

To access this dialog, select "Setup > System > NRP-Z Info/Update...".

The "NRP-Z Info / Update" dialog indicates the connected R&S NRP-Z Power Sensors with specific information and contains the functions to update the firmware of a connected sensor.

The remote commands required to remotely configure the power sensor settings are described in Chapter 7.12, "Power Sensor Measurement Subsystems", on page 389.

How to update an R&S NRP sensor

To perform an R&S NRP sensor update proceed as follows:

- Open the R&S website http://www.rohde-schwarz.com in section "Power Meters & Voltmeters > R&S NRP-Z Sensors".
- 2. Select the respective sensor, e.g. R&S NRP-Z81.
- 3. Select "Downloads > Firmware" and the offered firmware suitable for your sensor.
- Transfer and save the firmware on the instruments, for example in the /var/ directory.
- Connect the sensor to the R&S SMF and select "Setup > System > NRP-Z Info Update" to open the dialog.
- 6. Select the sensor in the left sensor selection field.
- 7. Select the update file with "Select NRP File".
- 8. Start the update procedure with "Run Update".

The update starts and a bar indicates the progress.

How to restart an interrupted update of an R&S NRP sensor

An accidental removal of the sensor during the update process interrupts the update.

If no other sensor is connected to the instrument, proceed as follows to restart the update process:

- 1. Do not reconnect the sensor but keep it ready to be connected.
- In the "Setup > System > NRP-Z Info Update" dialog, select "Rescue" in the left sensor selection field
- 3. Activate "Run Update".
- 4. Confirm query in message box

General Instrument Settings

5. Connect sensor within 4 seconds

The update starts, a bar informs about the progress.

Current Sensors

Shows the sensors that are connected to the generator with information on serial number, the revision state and some features.

Tip: Click on a sensor to get quick information about the firmware version and whether this sensor measures the peak of the signal.

"K28Support" indicates the R&S SMF-K28 measurement functions provided bxy the sensor.

Remote command:

```
SENSe<ch>[:POWer]:TYPE? on page 438
SENSe<ch>[:POWer]:SVERsion? on page 405
SENSe<ch>[:POWer]:SNUMber? on page 404
```

Update

Section "Update" provides access to the file system in order to select a file for an R&S NRP sensor update (Button "Select NRP File"), the selected file is indicated to the left of the button. On the left side, the sensor to be updated is selected.

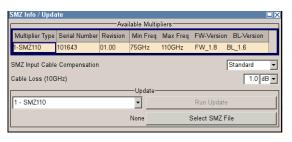
Button "Run Update" starts the update.

Note: If the update is interrupted for example by accidental removal of the sensor during the process, the button "Rescue" appears. Thus, you can restart the update process.

Prerequisite is that no other sensor is connected to the instrument.

Refer to "How to update an R&S NRP sensor" on page 111 and "How to restart an interrupted update of an R&S NRP sensor" on page 111 for detailed instructions.

Remote command:


n.a.

5.2.3.6 SMZ Info Update

The "SMZ Info/Update" dialog covers information on a connected frequency multiplier, like type, serial number revision state, frequency range and firmware version. You can directly perform an update of the multiplier firmware.

To access the "SMZ Info/Update" dialog, perform one of the following

- On the front panel, press the SETUP key and select "SMZ > SMZ Info Update".
- In the block diagram, select "RF Block > Configure > SMZ Info Update"

General Instrument Settings

Where you can find the description...

Since this section is relevant when an R&S SMZxxx frequency multiplier is connected, you can find a detailed description in the user manual of the frequency multiplier. It is included in the online help of the R&S SMF, but can also be found in pdf format on the CD, or on the R&S website http://www.rohde-schwarz.com/product/SMZ.html.

Firmware Update

Up to the R&S SMF firmware version 2.20.232.xx, the "Update" function is a protected procedure which can be accessed if protection level 2 is disabled (authorized personnel of R&S Service Departments only). When protection is activated, you can not see this section in the dialog.

Starting with the R&S SMF firmware version 2.20.530.xx, the function is no longer protected, and you can perform the update.

5.2.3.7 Update

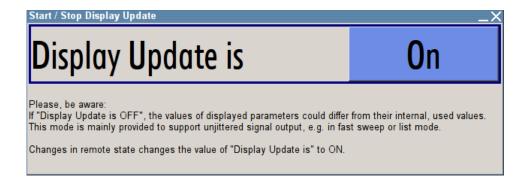
After a firmware update it is occasionally required to also update the "PCI-FPGA". This is enabled in the "Update" dialog.

At the first start of the new firmware, a message appears during the boot process if a "PCI-FPGA" update is required. Execute a PCI-FPGA update by pressing the "PCI-FPGA" button.

NOTICE

Impairment of instrument functions

To avoid impairment of instrument functions, the update of the "PCI-FPGA" must not be cancelled and the instrument must not be switched off during this update.



5.2.3.8 Display Update

The "Start/Stop Display Update" dialog provides the possibility to switch off update of the displayed parameters in order to increase speed for certain settings.

The indicated values are not updated and may therefore differ from the intern, used values.

General Instrument Settings

Display Update is On/Off

Switchs on/off update of the displayed parameters.

Switching off the update of the displayed parameters increases the speed for certain settings.

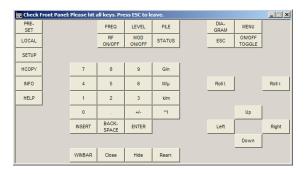
Note: For optimum sweep performance with short dwell times and for fast settling times, it is recommended to switch off the display update .

Remote command:

:SYSTem:DISPlay:UPDate on page 590

5.2.3.9 Check Front Panel

With the functions provided in this dialog you can verify the functionality of the control keys of the R&S SMF.


In case of malfunctions, contact your Rohde & Schwarz Customer Support Center for technical support, see http://www.customersupport@rohde-schwarz.com.

Accessing the online help in the check front panel dialog or exiting via ESC During the test, the actual functions of all keys are disabled, including the HELP and the ESC keys.

Check Front Panel Settings

► To access this dialog, Press the "setup" key and select "Setup > Test > Check Front Panel".

General Instrument Settings

Reflecting the front panel, the "Check Front Panel" dialog contains all functions to test the operating elements of the instrument.

Performing the Front Panel Tests

To perform the front panel test, you operate the keys at the front panel, and check the response of the instrument in the "Check Front Panel" dialog. To perform this test properly, it is essential that you check each key of the front panel. The test is only completed, when you have veryfied all keys.

During the test, the actual functions of the keys are disabled.

Proceed as follows:

- Press the SETUP key.
- Select "Test > Check Front Panel" The "Check Front Panel" dialog opens.
- Press a key on the front panel.
 Check if the corresponding key in the "Check Front Panel" dialog turns green.
- 4. Press the same key a second time.
 - Check that the key in the dialog turns red.

Note: Pressing the same key again has no further effect, with the exception of the ESC key, see Press the ESC key a third time.

5. Continue with the next key on the front panel and repeat step 3 to step 5 until all keys are tested.

The test is completed, when each key is verified successfully, confirmed by a "Test passed" message.

Select "OK" to exit the test.

Press the ESC key a third time.
Exits the "Check Front Panel" dialog, even if you have not yet checked all the keys.

Expected responses:

- Pressing a key once (green), pressing twice (red)
- Pressing the ESC key a third time exits the dialog.

If you detect a malfunction, for example, you press the front panel key the first time, and the color of the button in the dialog turns red (instead of green), the front panel key may be stuck. In this case, contact the Rohde & Schwarz Customer Support Center for technical support, see http://www.customersupport@rohde-schwarz.com.

General Instrument Settings

5.2.3.10 Shutting Down and Rebooting the Instrument

The POWER ON/STANDBY front panel key switches the instrument from the standby to the ready state or vice versa. In remote operation form a remote computer or in manual control, the R&S SMF provides you with another possibility to shut the instrument down or to reboot the system.

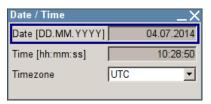
▶ To access the required settings, select "Setup > Environment > Shut Down".

Remote control commands:

• :SYSTem: SHUTdown on page 590

• :SYSTem: REBoot on page 590

see also :SYSTem:RESTart on page 590


5.2.3.11 Date and Time

The R&S SMF uses an internal real time clock to determine the date and time. It adjusts the time and date to the timezone of your location automatically, by providing a selection list of continents and cities.

The instrument records the time whenever you create or modify files on your instrument or you use timed licences.

To access the required settings:

Select "Setup > Environment > Date/Time" via the SETUP or MENU key.

The "Date / Time" dialog contains the time and data settings of the operating system

The parameters "Date" and "Time" are protected to prevent accidental changes. To enable editing, unlock protection level 1, see Chapter 5.2.3.18, "Protection", on page 127.

Date

Displays the date set in the operating system in the format [dd.mm.yyyy].

Remote command:

:SYSTem:DATE on page 590

General Instrument Settings

Time

Displays the time set in the operating system in the format [hh.mm.ss].

The time setting corresponds to the selected Time Zone.

Remote command:

```
:SYSTem:TIME on page 591
```

Time Zone

Selects the time zone.

You can select the time zone according to the major cities on the respective continents.

Note: By typing the first letter, you can quickly navigate through the lists to find the desired destination.

Remote command:

```
:SYSTem:TIME:ZONE on page 592
:SYSTem:TIME:ZONE:CATalog? on page 592
```

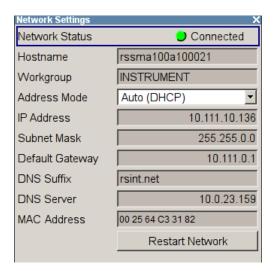
5.2.3.12 Network Settings

The "Network Settings" dialog shows the parameters relevant for identifying the instrument in a network. The R&S SMF is equipped with a network interface and can be connected to an Ethernet LAN (local area network).

How to connect the signal generator to the network is described in Chapter 2.6.1, "Connecting the Instrument to the Network", on page 39.

NOTICE

Risk of network errors!


Connection errors can affect the entire network.

If your network does not support DHCP, or if you choose to disable dynamic TCP/IP configuration, you must assign valid address information before connecting the instrument to the LAN.

Contact your network administrator to obtain a valid IP address.

➤ To access this dialog, press the SETUP or MENU key and select "Environment > Network Settings".

General Instrument Settings

In the "Network Settings" dialog, you can configure the settings of the general network environment and specific identification parameters of the instrument in the network.

The remote commands required to remotely configure the network are described in Chapter 7.15, "SYSTem Subsystem", on page 578.

Network Status

Indicates that the instrument is connected to the network.

Remote command:

:SYSTem:COMMunicate:NETWork:STATus? on page 585

Hostname

Displays the host name.

Each instrument is delivered with an assigned host name, a logical name which can be used instead of the IP address. With the default network settings, the IP address is allocated by the DHCP server. This address may change each time the instrument is reconnected. Unlike the IP address, the host name does not change.

Note: Since the host name of the instrument is a protected parameter, you must first unlock protection level 1 to enable the entry (see Chapter 5.2.3.18, "Protection", on page 127).

It is recommended that you neither change the default network settings nor the host name in order to avoid problems with the network connection.

However, if you change the host name be sure to use an unique name.

Remote command:

:SYSTem:COMMunicate:NETWork[:COMMon]:HOSTname on page 583

Workgroup

Sets the individual windows workgroup name of the R&S SMF. This parameter is required in case the instrument is integrated in a windows network.

Note: Since the workgroup name of the instrument is a protected parameter, you must first unlock protection level 1 to enable the entry (see Chapter 5.2.3.18, "Protection", on page 127).

General Instrument Settings

Remote command:

:SYSTem:COMMunicate:NETWork[:COMMon]:WORKgroup on page 584

Address Mode

Selects the mode for assigning the IP address.

"Auto (DHCP)" Assigns the IP address automatically, provided the network supports

DHCP (**D**ynamic **H**ost **C**onfiguration **P**rotocol)

The network used must support automatic assignment of the IP address via DHCP or APIPA (Zeroconf) in order to use this function.

"Static" Enables you to assign the IP address manually.

Remote command:

:SYSTem:COMMunicate:NETWork:IPADdress:MODE on page 584

IP Address

Displays the IP address.

By default, the R&S SMF is configured to use dynamic TCP/IP configuration and to obtain the whole address information automatically.

If the network does not support DHCP or the attempt does not succeed, the instrument tries to obtain the IP address via Zeroconf (APIPA) protocol. IP addresses assigned via Zeroconf start with the number blocks 169.254.*.*

Note: An IP address that is assigned via the Zeroconf protocol while the network requires an IP address assigned via the DHCP server may cause network connection failures.

See Chapter 9.5, "Resolving Network Connection Failures", on page 611.

To assign the IP address manually, select Address Mode "Static".

Remote command:

:SYSTem:COMMunicate:NETWork:IPADdress on page 584

Subnet Mask

Displays the bit group of the subnet in the host identifier.

To assign the subnet mask manually, select Address Mode "Static".

Remote command:

:SYSTem:COMMunicate:NETWork[:IPADdress]:SUBNet:MASK on page 585

Default Gateway

Displays the gateway address.

To assign the gateway address manually, select Address Mode "Static".

This address identifies the router on the same network as the instrument that is used to forward traffic to destinations beyond the local network.

Remote command:

:SYSTem:COMMunicate:NETWork[:IPADdress]:GATeway on page 585

DNS Suffix

Displays the primary DNS (**D**omain **N**ame **S**ystem) suffix, that means the DNS name without the host name part.

General Instrument Settings

The DNS system uses the suffix for registration and name resolution to uniquely identify the instrument in the entire network.

To assign the DNS suffix manually, select Address Mode "Static".

Remote command:

:SYSTem:COMMunicate:NETWork[:COMMon]:DOMain on page 583

DNS Server

Determines the preferred server for name resolution. The DNS server contains the underlying numerical values that are required for name resolution of the host name as part of the IP address.

To select the DNS server manually, select Address Mode "Static".

Remote command:

:SYSTem:COMMunicate:NETWork[:IPADdress]:DNS on page 584

MAC Address

Indicates the MAC (**M**edia **A**ccess **C**ontrol) address, a unique identifier of the network adapter in the R&S SMF.

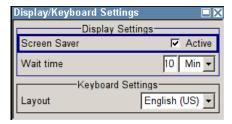
Remote command:

:SYSTem:COMMunicate:NETWork:MACaddress on page 585

Restart Network

Terminates the network connection to the instrument and subsequently re-establishes it.

Used this function to resolve network problems.


Note: Only the connection of the instrument to the network restarts, the network itself is not affected.

Remote command:

:SYSTem:COMMunicate:NETWork:RESTart on page 586

5.2.3.13 Display/Keyboard Settings

In the "Display/Keyboard Settings" dialog the power-save mode and external keyboard settings are made. It is opened using the SETUP or MENU key under "Environment".

Screen Saver Active

Activates/deactivates the screen-save mode of the display.

If activated, the display including backlight is completely switched off after the elapse of the "Wait Time" when no entries via front panel, external mouse or external keyboard are made.

General Instrument Settings

This mode is recommended for preserving the display especially if the instrument is exclusively operated via remote control.

Remote command:

:DISPlay:PSAVe[:STATe] on page 367

Wait Time

Enters the idle time that must elapse before the display lamp is shut off when no entries are made.

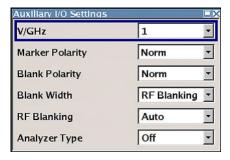
Remote command:

:DISPlay:PSAVe:HOLDoff on page 366

Layout (USB Keyboard Settings)

Selects the keyboard layout for the selected keyboard language.

The assignment of some keys depends on the selected layout and language.


Remote command:

:KBOard:LAYout on page 376 :KBOard:LANGuage on page 376

5.2.3.14 Auxiliary I/O Settings

The "Auxiliary I/O Settings" dialog provides access to the settings for the V/GHz, BLANK and MARKER auxiliary output.

To access this dialog, press the SETUP or MENU key under "Environment".

V/GHz

Selects the V/GHz ratio for the V/GHz output. This output provides a voltage which is proportional to the current sweep frequency. The voltage is always available, even with the sweep switched off.

Remote command:

:OUTPut:FPRoportional:SCALe on page 388

Marker Polarity

Selects the polarity of the **MARKER** output signal.

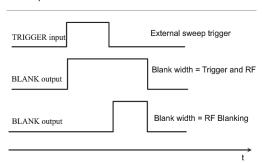
The user-programmable marker signal can be used for brightness control of an oscilloscope. The output becomes active when the sweep run has reached the marker. Up to 10 markers can be set to mark positions in the sweep run. The duration of the active signal is equal to the dwell time (DWELL) of a step.

General Instrument Settings

Remote command:

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity on page 568

Blank Polarity


Selects the polarity of the Blank marker.

Remote command:

:OUTPut:BLANk:POLarity on page 388

Blank Width

Selects the start of the blank marker in relation to the external sweep trigger (blank width).

"RF Blanking" The blank marker starts after the external sweep trigger signal.

"Trigger and

The blank marker starts with the external sweep trigger signal.

RF"

Remote command:

:OUTPut:BLANk:WIDTh on page 388

RF Blanking

Selection of the RF blanking method for sweeps with step widths less than 10 MHz.

"Auto" RF blanking only when the step synthesizer switches to the next step

(provides a clean RF spectrum).

"On" RF blanking after each step.

"Off" No RF blanking.

Remote command:

:OUTPut:BLANk:MODE on page 388

Analyzer Type

Allows to switch the HP8757D/E scalar network analyzer (selection HP8757D/E).

Note: The HP8757D/E has a special control mechanism via GPIB bus. RF blanking is internally set to "Auto". Start and stop frequencies are transferred to the network analyzer. An GPIB command is not available, since it is used for controlling the network analyzer.

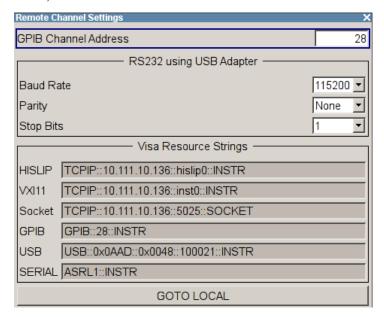
"Off" RF blanking as selected under RF blanking is active.

"8757D/E" An additional sawtooth signal from start and stop frequency is output

at the Z-AXIS output for control of the HP8757D/E scalar network

analyzer.

General Instrument Settings


Remote command:

n.a.

5.2.3.15 Remote Channel Settings

The "Remote Channel Settings" dialog provides access to the settings for remote control. The dialog is opened using the SETUP or MENU key under "Remote".

► To access this dialog, press the SETUP or MENU key and select "Remote > GPIB....".

The "Remote Channel Settings" dialog contains the GPIB address and displays the VISA resource strings provided for remote control via the various interfaces.

GPIB channel address

Sets the address of the GPIB channel the instrument is connected to.

Remote command:

:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess on page 583

RS232 using USB adapter

Remote control via a serial interface is possible via a USB. The controller and the instrument must be connected with the external USB/serial-adapter R&S TS1-USB (see recommended extras in the data sheet) and a serial crossover (null modem) cable. A USB connection requires the VISA library to be installed on the controller. VISA will detect and configure the R&S SMF automatically when the USB connection is established.

In addtion, you can also use a Bluetooth connection for remote control via the serial interface. The settings are effective for both interfaces (see also Chapter 5.2.3.19, "Security", on page 128).

General Instrument Settings

Baud Rate ← RS232 using USB adapter

Sets the baudrate for the serial remote control interface.

Remote command:

:SYSTem:COMMunicate:SERial:BAUD on page 587

Parity ← RS232 using USB adapter

Sets the parity for the serial remote control interface.

Remote command:

:SYSTem:COMMunicate:SERial:PARity on page 588

Stop Bits ← RS232 using USB adapter

Sets the number of stop bits for the serial remote control interface.

Remote command:

:SYSTem:COMMunicate:SERial:SBITs on page 588

Visa Resource Strings

Displays the visa resource strings, used for remote control of the instrument. Each interface requires an individual unique address, to identify the instrument for remote control.

Remote command:

```
:SYSTem:COMMunicate:HISLip:RESource? on page 586
:SYSTem:COMMunicate:NETWork:RESource? on page 586
:SYSTem:COMMunicate:SOCKet:RESource? on page 588
:SYSTem:COMMunicate:GPIB:RESource? on page 586
:SYSTem:COMMunicate:USB:RESource? on page 587
:SYSTem:COMMunicate:SERial:RESource? on page 587
```

Goto Local

Switches the instrument to operate in local control mode.

Switching from remote to local control mode can be also done with one of the following actions:

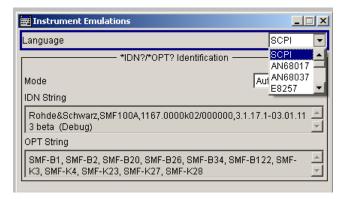
- manually with the LOCAL key on the front panel
- with the interface command >L via the remote control interface
- with the key combination CTRL + Q.

Remote command:

>L

5.2.3.16 Instrument Emulations

It is also possible to remotely control the R&S SMF via the command set of another signal generator, as for example of an HP generator. With this function you can, for example, replace a signal generator with an R&S SMF in an automated test setup, without adjusting the command scripts used.


You find all the remote control command sets supported by the R&S SMF in a selection list. For more information on this topic, an application note describes in detail how to use this feature. See the product site of the R&S SMF.

General Instrument Settings

The selected instrument also defines the identification string that is retrieved with query *IDN?. In addition to the preset values, you can enter a user-defined identification string, for example to provide individual identification for each generator, like 'MY R&S SMF' (see Mode and IDN String).

As any other parameter, you can additionally change the remote control command set to be emulated via the Language command. However, once you have switched to an emulation, the R&S SMF specific command set is disabled, that means this command is no longer effective. To return, you need to know the corresponding remote control command of the simulated instrument. If you emulate an HP generator for example, the HP command EX returns to the SCPI command set.

► To access this dialog, press the SETUP or MENU key and select "Remote > Instrument Emulations".

The "Instrument Emulations" dialog enables you to emulate a remote control command set of several other signal generators.

The remote commands required to remotely configure the emulation settings are described in Chapter 7.15, "SYSTem Subsystem", on page 578.

Language

Selects the instrument whose remote command set is emulated by the R&S SMF.

Remote command:

:SYSTem: LANGuage on page 589

Mode

Selects the way the instrument identification is performed.

"Automatic" Sets the "IDN String" and the "OPT String" automatically for the

instrument selected with the parameter Language.

instrument selected with the parameter Language.

Remote command:

:SYSTem:IDENtification on page 588

General Instrument Settings

Set to default

Enables you to reset the *IDN and *OPT strings in user defined mode, see "Mode" on page 125.

The default strings vary depending on the selected emulation mode (Language)

IDN String

Indicates the identification string of the instrument when queried with the common command *IDN?.

To assign a user defined identification string, select Mode "User defined".

Remote command:

*IDN? on page 355

OPT String

Indicates the option string of the instrument as queried with the common command *OPT?.

If a "User defined" (see Mode) IDN String is selected, you can create a user defined option string in addition to the automatically created one.

Remote command:

*OPT? on page 355

5.2.3.17 LXI Status

The "LXI - LAN eXtensions for Instruments - Status..." dialog displays the settings and status of the LAN and allows to reset the LAN connection.

For more information on LXI, see Chapter 2.8, "LXI Configuration", on page 49.

LAN Status

The LED indicates the LXI status.

The LAN Status is also indicated with the LED "LAN Status" on the front panel of the instrument.

"green" normal operation

"green (flashing)"

device identification

"red" LAN fault

Remote command:

n.a.

General Instrument Settings

LAN Reset

Initiates the network configuration reset mechanism for the instrument and resets the hostname, MAC address, and IP address.

According to the LXI standard, an LAN Reset must place the following network settings to a default state:

Parameter	Value
TCP/IP Mode	DHCP + Auto IP Address
Dynamic DNS	Enabled
ICMP Ping	Enabled
Password for LAN configuration	LxiWeblfc

The LAN Reset for the R&S SMF also resets the following parameters:

Parameter	
Hostname	Instrument-specific host name
Description	Vector Signal Generator
Negotiation	Auto Detect
VXI-11 Discovery	Enabled

The LAN settings are configured using the instrument's LXI Browser Interface described in Chapter 2.8, "LXI Configuration", on page 49.

To open the "Instrument Home Page" (welcome page), type the instrument's computer name (host name) or IP address in the address field of the browser on your PC, for example http://10.111.10.175.

Note: Do not add the missing zeros in the IP address, while opening the Instrument Home Page.

Remote command:

n a

5.2.3.18 Protection

This "Protection" dialog provides access to the unlocking of different protection levels. To open this dialog, use the SETUP or MENU key under "Protection".

After the instrument has been switched on, the protection levels 1 to 5 are automatically activated. To deactivate the protection, the correct password has to be entered. With the corresponding check boxes, you can activate the protection again.

General Instrument Settings

The following functions are protected in the rerspective levels:

- Protection Level 1
 protects against accidental changes to certain settings, such as clock and date,
 network settings or instrument names, etc. This level is accessible to the user.
- Protection Level 2
 provides access to the unlocking of protected service functions. It is accessible to
 authorized personnel of R&S Service Departments only.
- Protection Level 3-5 are reserved for factory internal use.

Protection Level/Password

Protection Level 1 can be activated to expand the functionality of the internal adjustment and to access the selftests.

The password is 123456.

Remote command:

:SYSTem:PROTect<ch>[:STATe] on page 589

5.2.3.19 Security

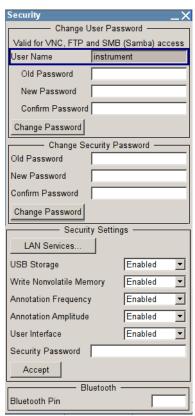
The security concept of the R&S SMF helps you to protect your instrument against uncontrolled access and changes. All provided security services require that you enter the security password.

Provided security services are:

- Password management secures controlled user access to the instrument
 With the two-step password concept, you can assign a user-defined password for
 the operating system, as well as a security password for accessing the mass storage of the instrument.
 - For more information concerning the security password, see the description Resolving Security Issues when Working with an R&S SMF. You can find this document on the R&S SMF product page at "Downloads" > "Manuals".
- LAN Services secures controlled network access.
 - You can individually lock and unlock the supported LAN interface services, see "LAN Services" on page 131.
 - Remote control via LAN interface requires that the interface is activated, but you can enable the required services specifically.
- General security parameters as:
 - USB Storage secures controlled access to the mass memory of the instrument.

General Instrument Settings

 Write nonvolatile memory protects against modification or deletion of data in the file system.


- Annotation frequency and amplitude prevents reading the display.
- User Interface prevents front panel operation and/or reading the display
- Bluetooth enables operation of the instrument via Bluetooth.

Changing the password for the operating system or the security password requires that you enter the old password, the new password and that you confirm the new password.

To assign the password, press the "Accept" button. This action can not be undone! Keep also in mind, that security settings are never reset, even if you perform a factory preset.

➤ To access this dialog, press the SETUP or MENU key and select "Protection " > "Security".

The "Security" dialog comprises the parameters for configuring the passwords, as well as the security settings of the mass storage and the LAN services.

The settings in this dialog will not be assigned until you enter the Security Password and confirm with the Accept button.

General Instrument Settings

User Name

Indicates the user name used for access to the Linux operating system.

The user name and password are required for remote access to the instrument via VNC, FTP or SAMBA.

Change User Password

Allows you to change and confirm the user password.

Old Password ← Change User Password

Enters the current user password. The default password is "instrument".

Note: It is highly recommended to change the default user password before connecting the instrument to the network.

New Password ← Change User Password

Enters the new user password.

Confirm Password ← Change User Password

Confirms the new user password by reperating.

Note: The new password will not be assigned until you select the Change Password button.

Change Password ← Change User Password

Changes the user password accordingly.

Note: Keep in mind, that a changed password is never reset, even if you perform a factory preset.

Change Security Password

Enables you to change and confirm the security password.

Old Password ← Change Security Password

Enters the currently used security password. The default password is '123456'.

Note: It is highly recommended to change the default security password before connecting the instrument to the network.

The security password is required when changing the status of the USB and LAN interface.

New Password ← Change Security Password

Enters the new security password.

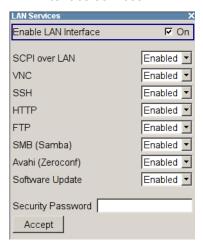
The security password may contain decimal characters only.

Confirm Password ← Change Security Password

Confirms the new password by repeating.

Note: The new password will not be assigned until you select the Change Password button.

Change Password ← Change Security Password


Changes the password accordingly.

General Instrument Settings

Note: Keep in mind, that a changed password is never reset, even if you perform a factory preset.

LAN Services

Opens the "LAN Services" dialog for individually enabling or disabling the available LAN interface services.

Enable LAN Interface ← LAN Services

Enables the LAN interface in general, and thus provides remote access via all unlocked services.

Note: The activated LAN services will not be assigned until you enter the Security Password and confirm with Accept.

Enable LAN Services individually ← LAN Services

Enables or disables the following interface services individually.

"SCPI over LAN"

"VNC"

"SSH"

"HTTP"

"FTP"

activates access over LAN to remotely control the instrument using SCPI (Standard Commands for Programmable Instruments) commands.

activates access via VNC (Virtual Network Computing) interface, a graphical desktop sharing system that uses RFB protocol to remotely control the instrument.

activates access via SSH (Secure Shell), a network protocol for secure data communication.

activates access via HTTP (Hyper Text Transfer Protocol), the application protocol for hypermedia information systems.

activates access via FTP (File Transfer Protocol), used to transfer files from a host to the instrument and vice versa.

"SMB (Samba)"

activates access to SMB (**S**erver **M**essage **B**lock), used for providing shared access to files, printers and serial ports of a network.

General Instrument Settings

"Avahi (Zeroconf)"

activates Avahi, a service for automatic configuration of the instrument in a network environment.

"Software Update"

allows updating the instrument firmware via the LAN interface. For more information on this topic see the release notes of the instrument, provided on the Internet at the download site or the Rohde & Schwarz Signal Generator home page.

USB Storage

Activates the access to external USB storage media.

This setting has no effect on a mouse or a keyboard, connected via USB.

Note: The setting will not be assigned until you enter the Security Password and confirm with Accept.

Write Nonvolatile Memory

Acitivates write protection on the file system to prevent modification or erasure of valuable data.

Note: The setting will not be assigned until you enter the Security Password, confirm with Accept, and reboot the instrument.

Annotation Frequency

Enables/disables the display of the currently used frequency in the header of the instrument.

Note: The setting will not be assigned until you enter the Security Password and confirm with Accept.

Remote command:

:DISPlay:ANNotation:FREQuency on page 365

Annotation Amplitude

Enables/disables the display of the currently selected level in the header of the instru-

Note: The setting will not be assigned until you enter the Security Password and confirm with Accept.

Remote command:

:DISPlay:ANNotation:AMPLitude on page 365

User Interface

Allows you to lock the manual of the controls of the instrument, and to hide even the entire display.

The setting requires the entry of the security password 123456 and is only accepted after the "Accept" button is pressed.

Tip: Section "Enabling a locked user interface for manual operation" on page 133 describes how you can unlock the control elements and the user interface.

"Enabled" Enables the display and all controls for the manual operation of the instrument.

General Instrument Settings

"VNC Only"

Locks the keys at the front panel and externally connected keyboard and mouse.

The display on the screen remains and shows the current settings and changes.

Unlocking is possible via VNC or turning off and on again.

"Display only"

Locks the manual operation of the instrument. The display on the screen remains and shows the current settings and changes. This security feature protects the instrument against unauthorized access, but still shows the current settings and processes, for example when you operate the instrument via remote control.

The function disables:

- the keys at the front panel of the instrument
- the external mouse and keyboard

The instrument indicates the locked controls by a padlock $\widehat{\ }$ softkey in the taskbar.

"Disabled"

Locks the display and all controls for the manual operation of the instrument.

This security feature protects the instrument against unauthorized reading and access, for example when you operate the instrument via remote control.

The function disables:

- the display
- the keys at the front panel of the instrument
- the external mouse and keyboard

The screen shuts off and shows a padlock instead.

Remote command:

:SYSTem:ULOCk on page 582 :SYSTem:DLOCk on page 581 :SYSTem:KLOCk on page 582

Enabling a locked user interface for manual operation

To unlock the user interface for manual operation you have the following options:

 On the instrument's keypad or external keyboard, enter the security password 123456

Even if you press any key, the instrument prompts you to enter the security password for unlocking.

General Instrument Settings

Note The character of the first key you pressed is immediately added in the input field. Prior to inserting the password delete this entry.

 In remote control mode, send the command SYST: ULOC ENABled to release all locks at once.

Alternatively, you can use the command SYST: KLOC OFF to unlock the keyboard, or SYST: DLOC OFF to release the display.

Via remote control, there is no password required.

Remote command:

```
:SYSTem:ULOCk on page 582
:SYSTem:DLOCk on page 581
:SYSTem:KLOCk on page 582
```

Security Password

Enters the password that is required to enable or to disable the settings protected by a security password. Default is '123456'.

Note: It is highly recommended that you to change the default security password before connecting the instrument to the network.

All settings are only accepted after the "Accept" button is pressed.

Accept

Applies the modified settings, provided the security password is entered correctly.

Note: This action can not be undone. Keep in mind, that a changed password is never reset, even if you perform a factory preset.

Bluetooth Pin

Sets the Bluetooth pin of an external Bluetooth device. The pin is required to enable remote control via an external Bluetooth device.

Requires a Bluetooth adapter (recommended extra, see data sheet) .

The interface parameters are identical to the RS232 interface parameters and can be set in the "Remote Channel Settings" dialog (see "RS232 using USB adapter" on page 123).

5.2.3.20 Save/Recall

The "Save/Recall" submenu can also be called up with the FILE key and is therefore described in the section of this key (see Chapter 5.2.8, "Storing and Loading Instrument Data - File Key", on page 141).

5.2.3.21 Factory Preset

The "Factory Preset" dialog provides a function to reset the instrument's settings to their factory state. This function is activated by pressing the "Execute Factory Preset" button.

General Instrument Settings

Factory Preset

Reset the instrument's settings to their factory state.

Note: Since Factory Preset resets the Remote Channel and network settings to the default values, executing Factory Preset via remote control terminates the connection to the instrument, if these settings had been configured to values different to the default ones!

The factory preset function resets nearly all instrument settings. In addition to the regular preset by means of the PRESET key, a "Factory Preset" resets also the following values:

- Reference frequency settings ("Ref Oscillator" menu)
- Power on settings ("Level/EMF" menu)
- Network settings including hostname ("Setup" menu)
- Remote Channel settings including GPIB address ("Setup" menu)
- Start/Stop Display Update ("Setup" menu)
- Display and keyboard settings ("Setup" menu).

To maintain security, password settings and all settings protected by these passwords like disabled USB and LAN connections are not changed.

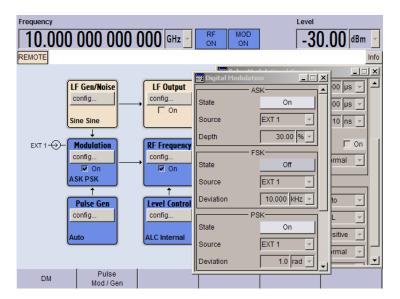
Not affected by the "Factory Preset" are also user data, lists or instrument settings files, created for example by means of the Save/Recall function.

Remote command:

:SYSTem: FPReset on page 359

5.2.3.22 Help

The "Help" dialog offers comprehensive online help for the R&S SMF. A desired topic can be selected via the table of contents (select "Manual") or the index (select "Index").


For context-sensitive information about a marked parameter, press the HELP key. For a description of the "Help" menu, refer to the section covering to the HELP key (see Chapter 5.2.7, "Help System - Help Key", on page 139).

5.2.4 Switching to Manual Control - Local Key

The local key switches from remote control to manual control (local state).

In remote control mode the instrument indicates the remote state in the display header. The rest of the display remains unchanged and shows the current instrument status, that means the status which exists under the remote control settings. The instrument can be operated (for example dialogs can be opened). However, it is not possible to enter or change values.

General Instrument Settings

The status message additionally indicates whether the LOCAL key is disabled or enabled.

The following states are indicated:

"REMOTE"

The LOCAL key switches the instrument from remote control to manual control. The current command must be fully processed before the mode is switched, otherwise the instrument switches immediately back to remote control.

"REM-LLO"

The LOCAL key is locked, inititated by the &LLO (local lockout) command. The instrument can be switched from remote state to local state only via remote control, for example with >R or the Visual Basic command CALL IBLOC (generator%). The LOCAL key has previously been locked by the remote command &LLO.

When switching from remote to manual control, the display update function is automatically deactivated ("SETUP" > "Start/Stop Display Update" > "Off").

5.2.5 Generating a Hard Copy of the Display

The save/recall function enables you to store the settings in a file. In addition, you can create a hard copy of the current display to save the most important settings of a performed signal generation in an image file.

General Instrument Settings

5.2.5.1 Hard Copy Settings

To access the dialog, press the HCOPY key.

The dialog contains the parameters for configuring the output format and location of a hardcopy.

The remote commands required to define the hard copy settings are described in Chapter 7.8, "HCOPy Subsystem", on page 369.

Destination

Indicates that the hardcopy is stored in a file (see also "File Options" on page 138).

Remote command:

:HCOPy:DEVice on page 370

Options

Opens the "Hardcopy Options" dialog for configuring the corresponding parameters (see "File Options" on page 138.

Remote command:

n.a.

File

Some configuration parameters are already offered in the Hardcopy dialog. All configuration parameters are available in "File Options" on page 138.

Automatic Naming

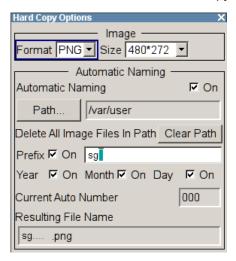
Activates automatic generation of the file name. Automatic naming is configured in the "Options..." sub dialog, see "File Options" on page 138.

Remote command:

```
:HCOPy:FILE[:NAME]:AUTO:STATe on page 375
```

File Info

Indicates the file name. The file name can be entered either manually via the file manager (button "File...") or generated automatically (Automatic naming checkbox). Automatic naming is configured in the "Options..." submenu.


Remote command:

```
:HCOPy:FILE[:NAME] on page 371
:HCOPy:FILE[:NAME]:AUTO:FILE? on page 372
```

General Instrument Settings

5.2.5.2 Hardcopy Options

This section describes the "Hardcopy Options" dialog.

File Options

Dialog for setting the file parameters.

"Format" Selects the output file format, for example *.bmp,

.jpg.xpm*.png.

Remote command:

:HCOPy:IMAGe:FORMat on page 375 :HCOPy:DEVice:LANGuage on page 370

"Automatic Naming"

If enabled, creates the output filenames automatically according to rules following the activated components.

"Path..." Selects the directory.

Note: To select the destination path, you have to specify a file name as well. Otherwise an error message is displayed and the selection is canceled.

Directory, path and file name are displayed in the infoline right to the "Path" button.

Remote command:

:HCOPy:FILE[:NAME]:AUTO:DIRectory on page 371

:HCOPy:FILE[:NAME]:AUTO? on page 371

"Clear Path"

Deletes all image files with extensions bmp, img, png, xpm and csv

in the directory set for automatic naming. Before deleting the image files a warning message is displayed

requiring the confirmation.

Remote command:

:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar on page 371

General Instrument Settings

"Prefix, Year, Determines the rules for "Automatic Naming".

Month, Day"

Per default, the automatically generated file name is composed of: <path>/<prefix><yyyy><MM><DD><Number>.<format>, where Y, M and D mean Year, Month, Day; Number is the "Current Auto Number".

You can deactivate/activate each component separately.

The "Resulting File Name" indicates the current file name syntax.

Remote command:

```
:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe on page 374
:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix on page 374
:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe on page 375
:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe on page 373
:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe on page 373
```

"Current Auto Number" Indicates the number which is used in the automatically generated file name.

Note: When initially switching on the instrument the number is reset to the lowest possible value. Starting with number 0 the output directory is scanned for already existing files. As long as files with the same name are existing the number is increased by 1. The number is automatically set so that the resulting file name will be unique within the selected path. The current number is not in the save/recall file but will be temporarily stored within the database. At following save operations the number is increased.

Remote command:

```
:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer? on page 373
```

"Resulting File Indicates the automatically generated file name. Name"

Remote command:

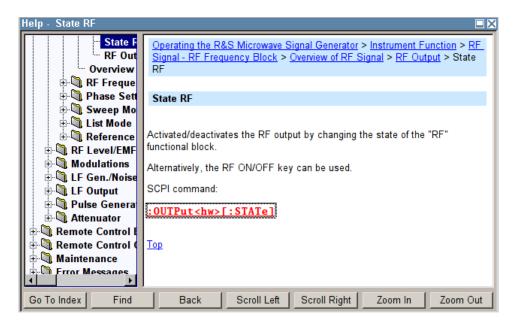
```
:HCOPy:FILE[:NAME]:AUTO:FILE? on page 372
```

Save

Stores the hardcopy.

Remote command:

:HCOPy[:EXECute] on page 370


5.2.6 Messages - Info Key

The INFO key opens a window containing a detailed description of every message displayed in the info bar, see Chapter 4.2.3, "Info Window", on page 79 and Chapter 9, "Status Information, Error Messages and Troubleshooting", on page 605.

5.2.7 Help System - Help Key

The HELP key opens a browser window containing a context-sensitive description of the highlighted parameter.

General Instrument Settings

The context-sensitive page which is opened with the HELP key is part of a comprehensive help system. It is possible to move from this context-sensitive page to any page of the help system. The following navigation aids are available:

- Internal links in the text
 - They open pages which are directly linked to the described function. In this way it is possible, for example, to call up the description of the GPIB command for any particular function.
- Back
 - The "Back" button calls up the page last viewed.
- Contents in the navigation panel
 - The contents list is used to open the individual help pages. It has a hierarchical structure. The highlighted line indicates where the currently displayed page is within the contents list.
- Index in the navigation panel
 The index is used to call up all pages which contain the selected entry. The index has an alphabetical structure and also contains all GPIB commands.
- Find
 - The find function allows you to look for freely selectable terms in all help pages. A list of the pages containing the entered term is displayed as the search result. The search can be limited to words in the page title to increase the number of hits.
- To maximize the "Topics" window, you can hide the contents tree with the "Hide Contents" button, and vice versa.

The softkeys are used to determine the entry focus for front panel operation, to select the content of the navigation window and to change the font size. To determine the entry focus for front panel operation the Cursors UP/Down are used. The links are highlighted in blue, and can be selected and called up using the rotary knob.

General Instrument Settings

5.2.8 Storing and Loading Instrument Data - File Key

The R&S SMF allows complete instrument settings to be stored in files on the CompactFlash™ Card.

Defined and complex instrument settings can then be reproduced at any time by loading this data. If required, these settings can be loaded to various signal generators.

The corresponding menu is available under "Save/Recall" in the "Setup" menu or accessible by means of the FILE key. The instrument settings are saved in files which can be stored in data directories.

Additionally there are intermediate memories in which the current instrument setting can be stored and then called up again by just pressing a key. This provides fast switching between different instrument settings.

Only settings which differ from the preset values and configuration data for the operating elements (e.g. window positions) are stored. As a result the files remain relatively small. Furthermore, instrument settings can easily be transferred between different equipped signal generators since the files contain only relevant information. When loaded, the referenced settings are implemented and all non-referenced parameters are set to the associated preset values.

If list data is part of the instrument settings, e.g. a list of user correction data, a reference to this list is stored, not the list itself. The list is reactivated when the associated settings are loaded, but the list may have been modified or deleted in the meantime or may not be available on a different instrument. If the list has been modified, the new entries will be used. An error message appears if an attempt is made to access a non-existing list or to activate settings which are not supported by the instrument.

- Network settings and remote settings are not saved and restored.
- Lists are stored and loaded in the appropriate menus. For example, the user correction data list is created and stored in the "User Correction" menu.

When loading an instrument setting, it is possible to select whether the current frequency and level setting is to be retained or whether the stored settings are to be activated. It is possible to delete stored instrument settings. A file can be copied by loading it with "Recall" and then storing it under a new name.

Settings can be transferred easily between instruments with different equipment options and/or firmware versions because only the settings which differ from the preset values are affected. When settings are loaded, only those which are possible on the instrument are implemented. Error messages indicate the settings which cannot be implemented.

The stored file is transferred from one instrument to another using the memory stick.

General file management functions such as copying and moving data are available in the "File Manager" dialog.

General Instrument Settings

5.2.8.1 Save/Recall Menu

The settings available in the File menu "Save/Recall" depend on the operation selected under "Select Operation".

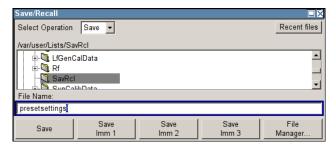
For more information, see Chapter 4.7.1, "File Select Dialog", on page 95.

Select Operation

Selects the file function.

Accesses the settings for storing ("Save") and loading ("Recall") of the instrument settings.

"Save..." Calls the menu for storing the current instrument setting (see Chap-


ter 5.2.8.2, "Storing Instrument Settings", on page 142).

"Recall..." Calls the menu for calling up a stored instrument setting (see Chap-

ter 5.2.8.3, "Loading Instrument Settings", on page 143).

5.2.8.2 Storing Instrument Settings

If "Save" is selected under "Select Operation", the File menu provides options for storing the current instrument setting in a file.

Recent files

Displays the files last used.

Directory, File List and File Name

Note:

You access this generic standard function each time you perform one of the following:

- store or load (settings) files
- define a folder these files are to be stored in or
- navigate through the file system.

The name of the dialog is context sensitive but the provided functions are self-explanatory and very similar.

With the provided settings, you can perform the following:

- to navigate through the file system, use the directory tree
- to load and store files, use the dedicated functions "Select", "Save" and Recent files

General Instrument Settings

 to perform standard file management functions, like create new directories, move, copy, delete files and/or directories, use the standard "File Manager" function (see "File Manager" on page 143).

Remote command:

to list all files in a directory:

```
:MMEMory:CDIRectory on page 381
:MMEMory:CATalog? on page 380
[:SOURce]:CORRection:CSET:CATalog? on page 458
```

Save

Stores the current instrument settings under the specified path.

Remote command:

```
*SAV on page 357
:MMEMory:STORe:STATe on page 385
```

Save Immediate x

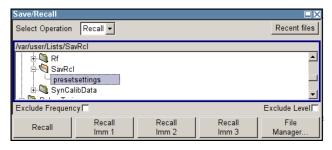
Stores the current instrument setting in one of the three intermediate memories.

These instrument settings are retained until a different instrument setting is stored in the intermediate memory. When the instrument is switched off, the contents of the intermediate memories are retained.

Remote command:

*SAV on page 357

File Manager


Accesses the "File Manager" dialog, see Chapter 5.2.8.4, "File Manager", on page 145.

Remote command:

n.a.

5.2.8.3 Loading Instrument Settings

If "Recall" is selected under "Select Operation", the "File" menu provides options for loading complete instrument settings. Here it is possible to select whether the current or stored frequency and level settings are to be used.

Recent files

Displays the files last used.

General Instrument Settings

Directory, File List and File Name Note:

You access this generic standard function each time you perform one of the following:

- store or load (settings) files
- define a folder these files are to be stored in or
- navigate through the file system.

The name of the dialog is context sensitive but the provided functions are self-explanatory and very similar.

With the provided settings, you can perform the following:

- to navigate through the file system, use the directory tree
- to load and store files, use the dedicated functions "Select", "Save" and Recent files
- to perform standard file management functions, like create new directories, move, copy, delete files and/or directories, use the standard "File Manager" function (see "File Manager" on page 143).

Remote command:

to list all files in a directory:

```
:MMEMory:CDIRectory on page 381
:MMEMory:CATalog? on page 380
[:SOURce]:CORRection:CSET:CATalog? on page 458
```

Exclude Frequency

The current frequency is retained when a stored instrument setting is loaded.

Remote command:

```
[:SOURce<hw>]:FREQuency[:CW|FIXed]:RCL on page 474
```

Exclude Level

The current level is retained when a stored instrument setting is loaded.

Remote command:

```
[:SOURce<hw>]:POWer[:LEVel][:IMMediate]:RCL on page 531
```

Recall

Load the selected configuration.

If an instrument setting in which a sweep was activated is stored, the sweep is started when the recall command is called.

If an instrument setting which accesses lists is stored, this list is also loaded.

If the list has been deleted in the meantime, an error message appears when the instrument setting is loaded. If the list has been overwritten in the meantime, the new entries will be used.

Remote command:

```
:MMEMory:LOAD:STATe on page 384 *RCL on page 356
```

Recall Immediate x

Loads the selected configuration from one of the three intermediate memories.

General Instrument Settings

If an instrument setting in which a sweep was activated is stored, the sweep is started when the recall command is called.

If an instrument setting which accesses lists is stored, this list is also loaded.

If the list has been deleted in the meantime, an error message appears when the instrument setting is loaded. If the list has been overwritten in the meantime, the new entries will be used.

A message appears if no instrument configuration is stored in this memory.

Remote command:

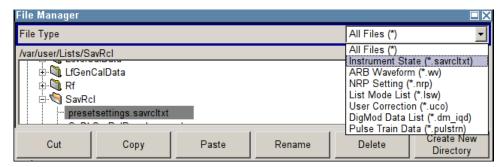
*RCL on page 356

File Manager

Accesses the "File Manager" dialog, see Chapter 5.2.8.4, "File Manager", on page 145.

Remote command:

n.a.


5.2.8.4 File Manager

The "File Manager" is a tool very similar to a standard Windows Explorer and helps you manage mass storage media and files stored on the R&S SMF.

You can perform the following tasks:

- Copying multiple files from disk to other media and vice versa, see Chapter 5.2.8.5,
 "Accessing the File System of the Instrument and Transferring Files from and to the Instrument", on page 147
- Copying files into another directory, see Copy and Paste
- Renaming and deleting files, see Rename and Delete
- Creating new directories on the following drives:
 - hard disk
 - CompactFlash™ Card
 - memory stick

See Create New Directory

For more information, see Chapter 4.7.2, "File Manager", on page 96.

General Instrument Settings

File Type

Selects the file type to be listed. If you select a file type with a specific file extension, only files with this extension are listed in the directory.

Remote command:

n.a.

Directory and File Name

Selects the directory in which the file to be deleted or copied is located. The dialog lists all files in this directory. Selected files are highlighted. The path is indicated above the directory window.

Unlike the "Save/Recall" and "File Select" dialogs, the "File Manager" displays the full file names including extensions.

Remote command:

:MMEMory:CDIRectory on page 381

Cut

Cuts the selected file. It can be pasted into a different directory using the "Paste" button.

Remote command:

:MMEMory: DELete on page 383

Copy

Copies the selected file. It can be pasted into a different or the same directory using the "Paste" button. When pasting the file into the same directory file name Copy of < file name > is given automatically. When pasting the file into a different directory, the original file name is kept.

Remote command:

:MMEMory:COPY on page 381

Paste

Pastes the file that has been copied or cut before.

Remote command:

n.a.

Rename

Renames the selected file or directory. The new name can be entered in the "New Filename" dialog.

Remote command:

:MMEMory:MOVE on page 384

Delete

Deletes the selected file. Before the file is deleted, a message appears prompting the user to confirm deletion of the file.

Remote command:

:MMEMory: DELete on page 383

General Instrument Settings

Create New Directory

Creates a new directory. The name of the new directory can be entered in the "New Directory" dialog.

Note: When the subdirectory is entered, it is possible to enter an absolute path name (e.g. /var/MEAS) or the path relative to the current directory (e.g. . . /MEAS).

The directory is created as a subdirectory in the selected level.

Remote command:

:MMEMory:MDIRectory on page 384

5.2.8.5 Accessing the File System of the Instrument and Transferring Files from and to the Instrument

To access files and the file system of the instrument or to use the general file management functions such as copying and moving data, use the standard "File Manager" dialog.

To transfer files from and to the instruments or to exchange files, use one of the following alternatives:

- Connect a memory stick to one of the USB interfaces.
 The instrument recognizes automatically a connected memory stick.
- Connect the instrument to a LAN.
 For information on how to set up a LAN connection, refer to Chapter 2.6, "Setting Up a Network (LAN) Connection", on page 38.

An instrument connected to a LAN supports the standard file transfer methods from a remote client:

- FTP (file transfer protocol)
 see "To access the file system of the R&S SMF via ftp" on page 147
- File sharing according to the SAMBA/SMB (server message block) protocol see "To access the file system of the R&S SMF via SMB (Samba)" on page 148

Both file transfer methods access the folder /var/user/share.

This section provides an introduction to this topic. For comprehensive information, refer to the Application Note 1GP72 "Connectivity of Rohde&Schwarz Signal Generators".

To access the file system of the R&S SMF via ftp

If the R&S SMF is connected to a LAN and the required configurations are completed, you can use File Transfer Protocol (ftp) to access the file system and to transfer files from and to the instrument.

- 1. Connect the instrument and the remote PC to a LAN.
- 2. Find out the "IP Address" of the instrument:
 - a) Select "Setup > Environment > Network Settings".
 - b) Write down the "IP Address" of the instrument, e.g. 10.113.10.105.
- 3. On the remote PC, start the Windows Explorer.

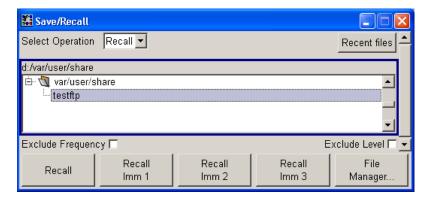
General Instrument Settings

4. In the address field, enter ftp://<"IP Address" of the Instrument>, e.g. ftp://10.113.10.105

A log on dialog opens and requests a password.

Tip: Default password. The FTP file access use the user *instrument* with default password *instrument*.

It is highly recommended that you change the user password in the "Security" dialog before connecting the instrument to the network!


See Chapter 5.2.3.19, "Security", on page 128.

5. Enter the password to access the /var/user/share directory.

You can access the files in the /var/user/ directory, perform standard function like creating directory, etc.

- 6. Open the /var/user/share directory and create a new directory, e.g. testftp.
- 7. On the instrument, press the FILE key and open the /var/user/share directory. The dialog displays the testftp directory.

To access the file system of the R&S SMF via SMB (Samba)

The SMB (Samba) protocol is an alternative way to access the file system of the instrument form a remote PC, if both the instrument and the PC are connected to a LAN.

- 1. Connect the instrument and the remote PC to a LAN.
- 2. Find out the "IP Address" of the instrument:
 - a) Select "Setup > Environment > Network Settings".

RF Frequency Block

- b) Write down the "IP Address" of the instrument, e.g. 10.113.10.105.
- 3. On the remote PC, start the Windows Explorer and open the "Map Network Drive" dialog.
 - a) Select a valid "Drive", e.g. W.
 - b) In the "Folder" field, enter:

```
//<"IP Address" of the Instrument>/share Or
//<"Hostname" of the Instrument>/share, e.g. //10.113.10.105/share
```

c) Select "Finish".

A log on dialog opens and requests an user name and a password.

4. Enter the user name and the password of your instrument.

The default user name and password is *instrument*.

Tip: Default password. The SAMBA/SMB file access use the user *instrument* with default password *instrument*.

It is highly recommended that you change the user password in the "Security" dialog before connecting the instrument to the network!

See Chapter 5.2.3.19, "Security", on page 128.

The /var/user/share directory of the instrument is mapped to and displayed as a network drive of the remote PC.

You can access the files in this directory, perform standard function like creating directory, storing files, etc.

5.3 RF Frequency Block

5.3.1 Overview of RF Signal

Settings for the RF output signal are made under "RF Frequency". These settings can be accessed in the block diagram by way of the "RF Frequency" function block, or by means of the menu with the same name which is opened using the MENU key.

The function block is available for the basic unit R&S SMF without any additional equipment options.

5.3.1.1 RF Output

Basically, the RF output signal is deactivated. The previous state is restored, when the signal is reactivated.

RF Frequency Block

Activating RF Signal Output

If the settings for the RF signal are done, you can activate RF signal output via:

- the TOGGLE ON/OFF key (the RF Frequency function block must first be selected)
- the RF ON/OFF key (the current entry focus is irrelevant)
- the checkbox in the "RF Frequency" block (see "RF On" on page 150)
- the "RF Frequency > RF ON" checkbox in the RF Frequency block (see "RF Output State" on page 150).

To open the menu, select the "Configure" button in the RF Frequency block.

The current state of the RF output (activated and deactivated) is indicated in the block diagram by means of the different block color and the status of the "On" checkbox.

The symbol for the signal output is displayed at the end of the block diagram, assigned to the attenuator block. The disconnected connection to the output is additionally shown when the output is deactivated.

RF On

Activates RF signal output.

This function corresponds to the RF ON /OFF key.

See also Chapter 5.3.1.1, "RF Output", on page 149.

Remote command:

:OUTPut<hw>[:STATe] on page 389

RF Output State

Activates the RF output signal by

- selecting the RF checkbox in the "Configure" dialog of the "RF Frequency" block.
- enabling the RF State in the "RF Level/EMF/ALC/UCOR" dialog.

Remote command:

:OUTPut<hw>[:STATe] on page 389

5.3.1.2 RF Signal Modes and Characteristics

The CW, Sweep and List modes are available for generating the RF signal.

CW

The RF signal is generated with the set frequency and level. This is the default mode.

Sweep

The RF signal is generated as a sweep with the set parameters. It is not possible to activate frequency, level and LF sweep simultaneously.

List Mode

The RF signal is generated on the basis of a list of predefined frequency and level values. The duration of the individual steps can be predefined.

Instruments connected downstream can be taken into consideration when setting the frequency and level by entering a frequency and/or level offset.

Automatic level control ("ALC") ensures maximum level accuracy.

RF Frequency Block

User-specific lists which contain level correction values for any frequency range ("User Correction") can be created to, for example, compensate the cable attenuation in a test assembly setup.

The R&S SMF generates the RF signal in unmodulated or analog form. The signal generator is equipped therefore with the following sources for analog modulations:

- two internal LF generators (option R&S SMF-B20)
- an internal pulse generator (option R&S SMF-K23)
- a noise generator (option R&S SMF-B20)
- the external modulation inputs EXT 1 and EXT 2 are available as the source for analog and/or digital modulations (option R&S SMF-B20).

An external trigger signal for the sweeps and the List mode can be provided at the TRIGGER input or AUX connector.

The input REF IN is used to input an external instrument reference, and the output REF OUT serves as the output of the reference frequency (internal or external).

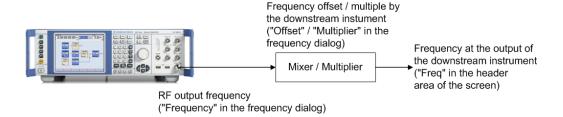
5.3.2 RF Frequency

The value of the RF frequency is displayed in the header of the display ("Freq"). This field provides the direct input of the RF frequency. Alternatively, you can enter the RF frequency in the "Frequency/Phase" dialog.

Note that the displayed RF frequency in the header, and the RF output frequency, entered in the "Frequency/Phase" dialog can be different, as explained in the following section.

5.3.2.1 RF Frequency vs. RF Output Frequency

The signal generator offers the possibility, to take additional frequency modifications of a downstream instrument into consideration, such as an offset set by a mixer, or a multiple of the frequency by a frequency multiplier. The R&S SMF indicates the resulting frequency, including offset and multiplication factor in the header of the screen. that means the indicated frequency corresponds to the frequency at the output of the downstream instrument. However, the frequency at the RF output of your signal generator always corresponds to the frequency set in the "Frequency/Phase" dialog.


In this dialog, you can also enter the values of the downstream instrument.

A set frequency offset is indicated by the "FREQ OFFSET/MULTIPLIER" status message.

The correlation between the RF frequency, the RF output frequency and the frequency offset is as follows:

"Freq" (in header) = "RF output frequency" (Frequency in dialog) * "Multiplier" factor (Multiplier in dialog) + "Freq offset" (Offset in dialog)

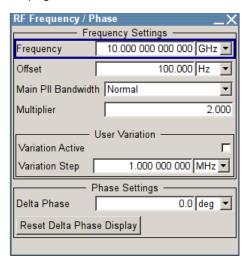
RF Frequency Block

5.3.2.2 Setting the RF Frequency

To change the RF frequency, press the FREQ key and enter the desired frequency. Changes to the RF frequency have an immediate effect (without confirmation with the ENTER key) on the output signal.

RF Freq

Enters the RF frequency, considering the frequency offset.

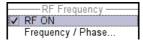

Note: The SCPI command sets the level of the "Freq" display, that means an entered frequency offset and multiplier factor are taken into consideration in the frequency value.

Remote command:

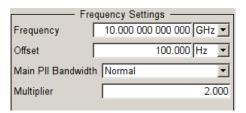
[:SOURce<hw>]:FREQuency[:CW|FIXed] on page 473

5.3.2.3 RF Frequency Dialog

The combined "RF Frequency / Phase..." dialog contains the parameters required for configuring the frequency and settings like a frequency offset, or a multiplier factor of an externally connected multiplier, see Chapter 5.3.2.4, "Frequency Settings", on page 153.



Furthermore, the dialog provides additional settings parameters which are described in:


Chapter 5.3.3, "Phase", on page 157

RF Frequency Block

5.3.2.4 Frequency Settings

- ➤ To access the dialog for configuring the frequency settings, perform one of the following:
 - Select "RF Frequency > config... > RF Frequency > Frequency/Phase".
 - Press the MENU key and select "RF Frequency > RF Frequency > Frequency/
 Phase".

In the upper section of the combined "RF Frequency / Phase ..." settings dialog you can configure the frequency of the RF signal.

The remote commands required to define the settings are described in Chapter 7.13.6, "SOURce:FREQuency Subsystem", on page 472.

Frequency

Sets the RF frequency of the RF output connector. The frequency entered and displayed here corresponds to the frequency at the RF output, that means any offset entry is not taken into consideration.

Note: Status bar values blanked?

For security concerns or certain operating modes, the instrument blanks the frequency and level display in the status bar.

The display has been disabled for security reasons, see Annotation Frequency and Annotation Amplitude.

The display is disabled when list mode is running, see "State - List Mode" on page 173.

Remote command:

[:SOURce<hw>]:FREQuency[:CW|FIXed] on page 473

Note: This command sets the frequency of the "FREQ" display, that is the frequency containing offset and multiplier.

Offset

Sets the frequency offset relative to the RF frequency. The frequency offset of a downstream instrument (for example a mixer) is entered.

The entry does not change the value of the RF frequency at the RF output. It only changes the RF frequency displayed in the display header. The value of the RF frequency in the header corresponds to the frequency at the output of the downstream instrument.

RF Frequency Block

Remote command:

[:SOURce<hw>]:FREQuency:OFFSet on page 476

Main PII Bandwidth

Selects the PLL (Phase Locked Loop) bandwidth of the main synthesizer.

Refer to Chapter 5.3.2.6, "The Configurable Main PLL Bandwidth", on page 155 for details.

"Normal"

Sets the default main PLL bandwidth. The instrument provides the maximum modulation bandwidth and FM / PhiM deviation.

"Narrow f<3GHz"

Sets the narrow PLL bandwidth.

Remote command:

[:SOURce<hw>]:FREQuency:PLL:MODE on page 477

Multiplier

Sets the multiplication factor for the RF frequency.

In the frequency field of the status bar, the instrument adjusts its frequency display according to the set multiplication factor. This frequency value shows the frequency at the output of the downstream multiplier. The entry does not change the RF frequency at the RF output of the R&S SMF, see also Chapter 5.3.2.1, "RF Frequency vs. RF Output Frequency", on page 151.

Remote command:

[:SOURce<hw>]:FREQuency:MULTiplier on page 476

5.3.2.5 User Variation Settings

- ► To access the dialog for configuring the user variation setting, perform one of the following:
 - Select "RF Frequency > config... > RF Frequency > Frequency/Phase".
 - Press the MENU key and select "RF Frequency > RF Frequency > Frequency/
 Phase".

The combined "RF Frequency / Phase ..." settings dialog contains the parameters determine the step size for adjusting the frequency with the rotary knob.

Variation Active

Activates the user-defined step width used when varying the frequency value with the rotary knob.

"ON"

The frequency value set with the rotary knob is varied using the userdefined step width which is entered under "Variation Step".

RF Frequency Block

"OFF"

The frequency value set with the rotary knob is varied in steps of one unit at the cursor position (standard operating mode).

Remote command:

[:SOURce<hw>]:FREQuency:STEP:MODE on page 479

Variation Step

Sets the user-defined step width. This step width is used when entering the RF frequency using the rotary knob. Frequency variation with this step width must also be activated with "Variation Active".

Remote command:

[:SOURce<hw>]:FREQuency:STEP[:INCRement] on page 479

5.3.2.6 The Configurable Main PLL Bandwidth

The latest generation of the R&S SMF provides an extended SynEx RF assembly which improves the phase noise performance. It is achieved by reducing the PLL bandwidth of the main synthesizer (see "Main PII Bandwidth" on page 154) for a certain frequency range and offset.

- The ability to change the PLL bandwidth requires that your device is equipped with the enhanced phase noise and FM/φM modulator (R&S SMF-B22) and the extended synthesis assembly (SynEx) with part number 1413.1800.02. This assembly is installed in all instruments with serial number 112000 or higher. If your instrument is equipped with the previous version of the SynEx assembly, the normal bandwidth is provided and th Main Pll Bandwidth parameter is suppressed in the settings dialog.
- The range of the adjustable PLL bandwidth is limited to 3 GHz. For frequencies
 higher than 3 GHz, the instrument uses the standard bandwidth automatically. The
 Main Pll Bandwidth selection switches to "Normal" mode.
- The narrow bandwidth increases the frequency settling time to approximately 1 ms.
 Therefore, the narrow PLL bandwidth mode and the list mode exclude each other.
 To generate a signal in list mode, the standard PLL bandwidth setting is required.

RF Frequency Block

Figure 5-1: SSB Phase Noise, comparison of the main synthesizer PLL bandwidth "Narrow" and "Normal"

The phase noise performance of the instrument for frequency offsets higher than 100 kHz is improved in the narrow PLL bandwidth mode (blue measurement curve), whereas the pedestal phase noise in the offset range 10 kHz ... 100 kHz is deteriorated.

Interactions of the Frequency and Phase Modulation Modes and the Configurable Main PLL Bandwidth

If you generate a frequency- or phase-modulated RF signal, you can also set the narrow PLL bandwidth, provided you perform the modulation in "Low Noise" mode. Consequently, some operation modes exclude each other.

The table shows the operating modes which can be activated simultaneously (+) or which deactivate each other (-):

Main PLL Bandwidth	FM Mode "Normal"	FM Mode "Low Noise"	φM Mode "Low Noise"	φM Mode "High Bandwidth"	φM Mode "High Deviation"
Normal	+	+	+	+	+
Narrow	-	+	+	-	-

Behavior of the instrument when you change the frequency or modulation modes

When you enable a mode, while another excluding mode is already active, the R&S SMF automatically adjusts the parameters of this previously set mode. Consequently, the instrument always performs the signal generation with the current settings and adjusts the foregoing settings accordingly, if required.

RF Frequency Block

A message in the info line indicates when there is a conflict between the modulation mode and the PLL bandwidth setting.

5.3.3 Phase

The phase of the RF output signal can be changed in the "Phase Settings" section of the "RF Frequency/Phase" dialog.

5.3.3.1 Phase Settings

- To access the dialog for configuring the phase settings, perform one of the following:
 - Select "RF Frequency > config... > RF Frequency > Frequency/Phase".
 - Press the MENU key and select "RF Frequency > RF Frequency > Frequency/ Phase".

The combined "RF Frequency / Phase ..." settings dialog contains the parameters to configure the phase settings of the RF signal.

The remote commands required to define the settings are described in Chapter 7.13.13, "SOURce:PHASe Subsystem", on page 523.

Delta Phase

Sets the phase of the RF signal. The current phase of the signal is used as the reference. This function allows, for example, the phase of the output signal to be synchronized with the phase of a signal from a second signal generator.

Remote command:

[:SOURce<hw>]:PHASe on page 523

Reset Delta Phase Display

Resets delta phase value. The set phase is adopted as the new current phase, i.e. the delta phase value is reset to 0.

Remote command:

[:SOURce<hw>]:PHASe:REFerence on page 524

5.3.4 Reference Oscillator

The R&S SMF is equipped with an internal reference oscillator that generates a reference frequency of 10 MHz. It is used as internal reference source for the synthesizer and the local oscillator. Alternatively, you can apply an external reference signal.

RF Frequency Block

Regardless of the used reference source (internal or external), the R&S SMF always provides the configured reference frequency at the output. You can use it, for example to synchronize several interconnected instruments.

The settings of the reference oscillator are not affected by an instrument preset ("PRE-SET" key).

The following examples briefly explain the possible test setups and the settings to be considered.

Internal f_{ref} = 10 MHz (10 MHz REF OUT)

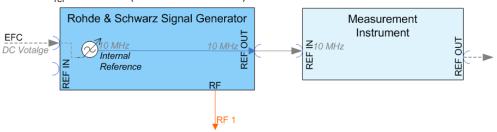


Figure 5-2: Synchronizing a subsequent instrument using the internal 10 MHz reference signal of the R&S SMF

The internal reference oscillator supplies the reference frequency.

In addition, you can shift the frequency by an external tuning voltage within a certain range, **EFC** (External Frequency Control). This function is used, for example, in phase noise measurement systems.

The frequency shift resulting from a tuning voltage value depends on the technical equipment of the instrument. See the data sheet for the associated technical data like sensitivity, input voltage range and impedance. The maximum bandwidth for external tuning signal input is approximately 50 Hz.

Note: The bandwidth of an external PLL (Phase Locked Loop) used in a phase noise measurement system, must be less than the bandwidth of the external tuning signal input. If the measurement requires a higher bandwidth for the PLL, it is recommended that you use the external FM modulation (DC coupling) in low noise mode. The FM-DC mode yields a fixed tuning sensitivity that is independent of the RF output frequency and corresponds to the set FM deviation.

Settings:

- Source: "Internal"
- External f_{ref} = 10 MHz (10 MHz REF OUT)

If you have a clean external reference signal with 10 MHz frequency, you can directly pass it to the output. The signal quality remains the same.

RF Frequency Block

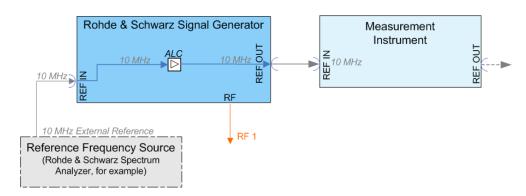


Figure 5-3: Synchronizing instruments by means of an externally applied reference signal having 10 MHz

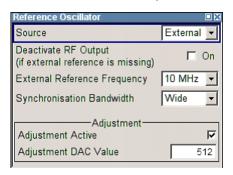
Settings:

- Source: "External"
- External Reference Frequency: "10 MHz"

Set the additionally provided parameters, as for example the synchronization bandwidth according to the requirements of the application.

Input and output connectors of the reference frequency

The appropriate connectors are located at the rear panel, see "REF IN" on page 27 and "REF OUT" on page 27.


To use the EFC feature, apply the signal at the EFC input connector at the rear of the instrument, see "EFC" on page 27.

5.3.4.1 Reference Oscillator Settings

To access the settings dialog for configuring the reference signal, perform one of the following:

- In the block diagram, select "RF Frequency > config... > RF Frequency > Reference Oscillator"
- Press the MENU key and select "RF Frequency > RF Frequency > Reference Oscillator"
- Press the SETUP key and select "Setup > System > Reference Oscillator"

RF Frequency Block

In the "Reference Oscillator Settings" dialog, you can select the signal source and frequency to be used as the reference frequency, and determine a user-defined adjustment value.

The remote commands required to define the reference oscillator settings are described in Chapter 7.13.17, "SOURce:ROSCillator Subsystem", on page 555.

Source

Selects the source of the reference frequency.

See Chapter 5.3.4, "Reference Oscillator", on page 157, which provides an overview of the different test scenarios for configuring the reference frequency.

"Internal" Uses the internal 10 MHz reference signal, either with the calibrated

or a user-defined adjustment value.

"External" Uses an external reference signal.

The frequency of the external reference signal must be selected

under "External Reference Frequency" on page 160.

Remote command:

[:SOURce]:ROSCillator:SOURce on page 558

Deactivate RF Output (if external reference is missing)

Turns the RF output off when the external reference signal is selected, but no signal is supplied.

This function prevents that no improper RF signal due to the missing external reference signal is used for measurements. A message indicates that the external signal is missing and the RF output is deactivated.

This setting is not affected by a reset.

Remote command:

```
[:SOURce]:ROSCillator:EXTernal:RFOFf[:STATe] on page 556
```

External Reference Frequency

Determines the frequency of the external reference signal.

You can apply an external reference signal having a frequency in the range of 1 MHz to 20 MHz.

Remote command:

```
[:SOURce]:ROSCillator:EXTernal:FREQuency on page 556
```

Synchronization Bandwidth

Selects the synchronization bandwidth for an external reference signal.

"Narrow" The synchronization bandwidth is approximately 1 Hz.

"Wide" The synchronization bandwidth is approximately 750 Hz.

This mode is useful for very precise reference sources of high spec-

tral purity.

Remote command:

[:SOURce]:ROSCillator:EXTernal:SBANdwidth on page 556

RF Frequency Block

Output

Selects the output for the reference oscillator signal.

You can assign the signal to the output, when the external reference frequency is 10 MHz.

Remote command:

[:SOURce]:ROSCillator:OUTPut:SOURce on page 558

EFC - Reference Oscillator

Activates the electronic frequency control. EFC is performed by applying a tuning voltage at the "EFC" input at the rear of the instrument (Frequency Adjustment; see data sheet for technical information).

Remote command:

```
[:SOURce]:ROSCillator:EFC:STATe on page 555
```

Adjustment Active

Selects the adjustment mode.

"OFF" Uses the calibrated internal reference frequency.

"ON" Allows you to apply a deviation to the internal reference frequency,

according to your requirements. To enter the value, use Adjustment

DAC Value.

Remote command:

```
[:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] on page 557
```

Adjustment DAC Value

Sets a user-defined deviation for the internal reference frequency. This value takes effect when it is activated with Adjustment Active. "0" represents the calibrated state. The setting range depends on the reference oscillator type and its factory calibration value.

Note: A factory preset resets this setting to the calibration value of the instrument.

Remote command:

```
[:SOURce]:ROSCillator[:INTernal]:ADJust:VALue on page 557
```

5.3.5 RF Frequency Sweep

5.3.5.1 Overview

The R&S SMF offers four different sweep types (RF frequency sweep, RF level sweep, LF frequency sweep, and LF level sweep) to be activated alternatively. Each type has 5 modes which differ with respect to the sweep cycle mode (continuous, individual and step-by-step) and triggering mode (automatic, internal and external).

Option R&S SMF-K4 enables analog ramp sweep mode. This mode corresponds to the analog sweep of classic sweep generators, except that the sweep is fully synchronized over the complete range. In conjunction with scalar network analyzers or suitable

RF Frequency Block

spectrum analyzers, realtime adjustment of microwave filterscan be performed, for example.

To mark important frequency ranges such as filter bandwidths or the position of attenuation poles, the R&S SMF has 10 user-selectable frequency markers which can be output as pulse markers at the marker output (TTL level) or alternatively modulated on the RF level as level markers (level reduction of 1 dB).

- Sweeps and list mode can not be activated simultaneously, they deactivate each other.
- Activating a sweep mode immediately disables NRP-Z Level Control.
 Vice versa, a running sweep mode blocks "NRP-Z Level Control". It can not be activated
- If you want to remain at a specific frequency or level value during a sweep, enter the value directly in the status bar. The sweep stops immediately.

Setting a sweep

A sweep is set in five basic steps which are shown below taking a frequency sweep as an example.

The LF frequency sweep is activated and configured in the "LF Gen./Noise" block.

- 1. Set the sweep range ("Start Freq" and "Stop Freq" or "Center Freq" and "Span").
- Select linear or logarithmic sweep spacing ("Spacing").
- 3. Set the step width ("Step Lin/Log") and dwell time ("Dwell Time").
- 4. Activate the sweep ("Mode" to Auto, Single, Step or Extern Single, Extern Step).
- 5. Trigger the sweep, except for Auto mode ("Execute Single Sweep", Current Frequency or External Trigger Signal).

The different Sweep dialogs are activated as follows:

- The **RF frequency sweep** is activated in the "RF Frequency" block, see Chapter 5.3.5.2, "RF Frequency Sweep", on page 163.
- The RF level sweep is activated in the "Level Control" block, see Chapter 5.4.4, "RF Level Sweep", on page 186.
- The **LF frequency sweep** is activated and configured in the "LF Gen./Noise "block, seeChapter 5.6.1.3, "LF Frequency Sweep", on page 280.
 - **Note:** The "LF Gen./Noise" block is available with the option R&S SMF-B20.
- The LF level sweep is activated in the "LF Output" block, see Chapter 5.6.2.2, "LF Level Sweep", on page 290.

Note: The "LF Output" block is available with the option R&S SMF-B20.

RF Frequency Block

It is recommended to switch off the display update for optimum sweep performance especially with short dwell times (see Chapter 5.2.3.8, "Display Update", on page 113).

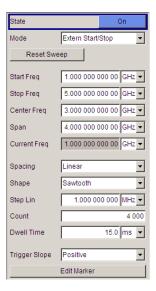
5.3.5.2 RF Frequency Sweep

The dialog enables you to activate and configure a sweep for the RF frequency.

To open the "Frequency Sweep" dialog, select "RF Frequency > Configure > Frequency Sweep" or use the MENU key under "RF Frequency".

In the top section of the dialog, the RF sweep is activated and the sweep mode is selected.

The buttons are used to reset the RF sweep (all sweep modes) or to execute the RF sweep ("Single" mode).


The sweep range, sweep spacing and dwell time are set in the bottom section.

The very fast ramp sweep can be activated in this section. The button "Edit Marker" opens the subdialog for configuring the sweep markers.

You can configure the sweep range of the RF sweep in two ways, either by entering the "Start" and "Stop" values or by entering the "Center" frequency and the "Span".

The two sets of parameters correlate as follows:

- "Start Freq" = "Center Freq" "Span"/2
- "Stop Freq" = "Center Freq" + "Span"/2
- "Center Freg" = ("Start Freg" + STOP FREQ)/2
- "Span" = "Stop Freq" "Start Freq"

RF Frequency Block

RF Frequency Sweep Settings

➤ To access the sweep dialog, select "RF Frequency > configure > Sweep/List > RF Frequency Sweep".

In these dialogs you can configure the corresponding sweep signal.

State - Frequency Sweep

Activates RF sweep mode.

Note:

Activating a sweep mode automatically deactivates other sweeps and the list mode.

Remote command:

[:SOURce<hw>]:FREQuency:MODE on page 475

Mode - RF Frequency Sweep

Selects the RF frequency sweep mode.

If you change the sweep mode during the execution, the signal generator stops the sweep and starts with the next trigger event at the initial value.

The "Reset Sweep" button sets the sweep to the start value.

"Auto"

Generates a continuously repeating sweep signal immediately after activating the sweep mode.

The sweep steps are performed atomatically, controlled by the dwell time, see "Dwell Time - Frequency Sweep" on page 170.

Example:

SOUR:SWE:FREQ:MODE AUTO
TRIG:FSW:SOUR AUTO
SOUR:FREQ:MODE SWE

"Single"

Generates a single sweep cycle after a trigger event.

The sweep steps within the cycle are performed automatically, controlled by the dwell time. If one cycle is completed, the instrument waits for the next trigger event.

To trigger the sweep, use "Execute Single Sweep" button, or the corresponding remote control commands, for example *TRG.

Example:

SOUR:SWE:FREQ:MODE AUTO
TRIG:FSW:SOUR SING
SOUR:FREQ:MODE SWE
SOUR:SWE:FREQ:EXEC

RF Frequency Block

"Step"

Generates the sweep signal step-by-step, manually triggered. To perform the sweep steps, enter the frequency value under Current Freq - Frequency Sweep. You can directly enter the value, but also use the UP and DOWN navigation keys or the ROTARY KNOB. You can determine the step width below in the entry field "Step Lin" or "Step Log", see Step Lin/Log - Frequency Sweep. If a step is out of the sweep range ("Start Freq" or "Stop Freq"), it is

Note: To step through the sweep frequencies in remote control mode, use the FREQ: MAN command with the UP or DOWN parameter.

Example:

ignored.

SOUR: FREQ: CENT 300MHz SOUR: FREQ: SPAN 400MHz SOUR: SWE: FREQ: SPAC LIN SOUR: SWE: FREQ: STEP: LIN 100MHz

SOUR: FREQ: MODE MAN set sweep mode "Step". SOUR: FREQ: MODE SWE

activate sweep mode, the frequency is set to "Start Freq".

SOUR: FREQ: MAN UP

set the frequency to the next higher sweep frequency.

SOUR: FREQ: MAN DOWN

set the frequency to the next lower sweep frequency.

"Extern Single"

Generates a single sweep cycle when an a external trigger event occurs.

The sweep steps within the cycle are performed automatically, controlled by the dwell time. If one cycle is completed, the instrument waits for the next trigger event.

To trigger the sweep, apply an external trigger signal. Refer to the description of the rear panel for information on the connectors for external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

SOUR: SWE: FREQ: MODE AUTO

TRIG:FSW:SOUR EXT

SOUR: FREQ: MODE SWE (External trigger)

RF Frequency Block

"Extern Step"

Generates the sweep signal step-by-step, manually triggered. To trigger a sweep step, apply an external trigger signal. The step width corresponds to the step width set for the rotary knob.

Example:

```
SOUR:SWE:FREQ:MODE STEP
SOUR:SWE:FREQ:SPAC LIN
SOUR:SWE:FREQ:STEP:LIN 1MHz
TRIG:FSW:SOUR EXT
SOUR:FREQ:MODE SWE (External trigger)
```

"Extern Start/Stop"

Generates a continuously repeating sweep signal that is started, stopped and restarted by subsequent external trigger events. The sweep steps are performed automatically, controlled by the dwell time.

Refer to the description of the rear panel for information on the connectors for external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

```
SOUR:SWE:FREQ:MODE AUTO
TRIG:FSW:SOUR EAUT
SOUR:FREQ:MODE SWE (External trigger)
```

Remote command:

```
[:SOURce<hw>]:SWEep[:FREQuency]:MODE on page 563
:TRIGger<hw>:FSWeep:SOURce on page 594
[:SOURce<hw>]:FREQuency:MODE on page 475
```

Specific Sweep Parameters

The sweep parameters described in this topic are only available for particular emulation languages.

For details, see 1GP92 "Remote Emulation with the R&S SMF microwave signal generator".

Mode ← Specific Sweep Parameters

Selects the RF frequency sweep mode.

("Auto" = timer controlled, "Manual" = manually controlled)

Repeat ← Specific Sweep Parameters

Sets the repetition mode.

```
("On" = continuously; "Off" = once)
```

Start Trigger ← Specific Sweep Parameters

Selects the mode to initiate a sweep.

("Auto" = starts immediately; "Single" = starts with a command (Bus); "External" = starts with an external trigger signal)

RF Frequency Block

Point Trigger ← **Specific Sweep Parameters**

Selects the mode to trigger the progress of each step.

("Auto" = immediately; "Single" = remotely (Bus); "External" = external signal)

Execute Single Sweep - Frequency Sweep

Starts a sweep manually. This trigger button is displayed in "Single" mode.

Remote command:

```
[:SOURce<hw>]:SWEep[:FREQuency]:EXECute on page 561
:TRIGger<hw>:FSWeep[:IMMediate] on page 595
:TRIGger<hw>[:SWEep][:IMMediate] on page 600
```

Reset Sweep - Frequency Sweep

Resets the sweep.

With the next trigger event, the sweep starts with at the initial value.

Remote command:

```
[:SOURce<hw>]:SWEep:RESet[:ALL] on page 574
```

Start Freq - Frequency Sweep

Sets the start frequency.

Remote command:

```
[:SOURce<hw>]:FREQuency:STARt on page 477
```

Stop Freq - Frequency Sweep

Sets the stop frequency.

Remote command:

```
[:SOURce<hw>]:FREQuency:STOP on page 478
```

Center Freq - Frequency Sweep

Sets the center frequency.

Remote command:

```
[:SOURce<hw>]:FREQuency:CENTer on page 472
```

Span - Frequency Sweep

Sets the span.

Remote command:

```
[:SOURce<hw>]:FREQuency:SPAN on page 477
```

Current Freq - Frequency Sweep

Displays the current frequency.

In sweep "Step" mode, the parameter is editable and you can enter frequency for the next step.

Remote command:

```
[:SOURce<hw>]:FREQuency:MANual on page 474
```

Spacing - Frequency Sweep

Selects the mode for the calculation of the frequency sweep intervals.

RF Frequency Block

"Linear" Takes the frequency value entered as an absolute value in Hz.

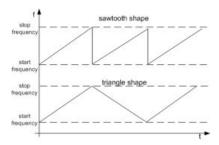
"Logarithmic" Takes the value entered as a lograithmic value, that means as a con-

stant fraction of teh current frequency in %.

"Ramp" With the ramp sweep, a synthesized continuous analog frequency

sweep is provided for the set sweep time. The sweep time is entered

below.


Note: The ramp sweep is only available with option R&S SMF-K4.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:SPACing on page 565

Shape - RF Frequency Sweep

Selects the waveform shape of the sweep signal.

"Sawtooth" One sweep runs from start to stop frequency. Each subsequent

sweep starts at the start frequency, that means the shape of the

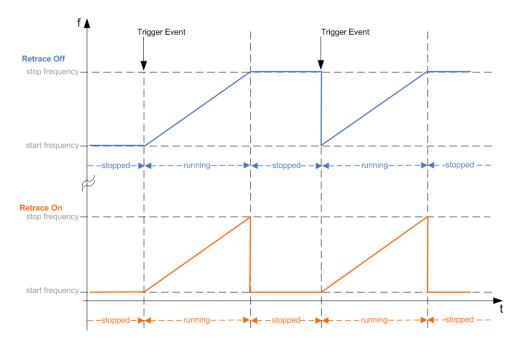
sweep sequence resembles a sawtooth.

"Triangle" The sweep runs from the start to the stop frequency and back, that

means the shape of the sweep resembles a triangle. Each subse-

quent sweep starts at the start frequency.

Remote command:


[:SOURce<hw>]:SWEep[:FREQuency]:SHAPe on page 565

Retrace - RF Frequency Sweep

Activates that the signal changes to the start frequency value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single", see Mode - RF Frequency Sweep.

RF Frequency Block

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:RETRace on page 564

Step Lin/Log - Frequency Sweep

Sets the step width for the individual frequency sweep steps.

At each step this value is added to the current frequency.

Depending on the Spacing - Frequency Sweep mode you have set, the corresponding parameter is displayed.

"Step Lin" The step width is a constant value in Hz.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:STEP[:LINear] on page 566

"Step Log"

The step width is determined logarithmically in %, that means as a constant fraction of the current frequency.

Successive frequencies are calculated as follows:

- start_f < stop_f
 f2 = f1 * (1 + step_log / 100)
 If f2 > stop_f: f2 is set to stop_f.
- start_f > stop_f
 f2 = f1 / (1 + step_log / 100)
 If f2 < stop_f: f2 is set to stop_f.

When the shape "Triangle" is set, the frequency values on the slope from **stop_f** back to **start_f** are the same as on the slope from **start_f** to **stop_f**.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:STEP:LOGarithmic on page 567

Count - RF Frequency Sweep

Sets the number of sweep steps.

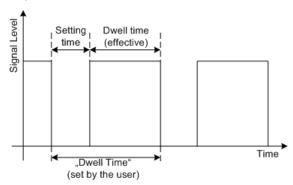
RF Frequency Block

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:POINts on page 564

Sweep Time - RF Frequency Sweep

This feature is available for ramp spacing only.


Sets the sweep time for ramp sweeps. Ramp sweeps are selected above under "Spacing - Frequency Sweep" on page 167.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:TIME on page 568

Dwell Time - Frequency Sweep

Sets the dwell time. The dwell time determines the duration of the individual sweep steps.

The "Dwell Time" set by the user is used as the step time of the sweep. The effective net dwell time is shorter, reduced by the setting time. This setting time may be greater than the time specified in the data sheet.

Note:

It is recommended to switch off the display update for optimum sweep performance especially with short dwell times (see Chapter 5.2.3.8, "Display Update", on page 113).

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:DWELl on page 560

Ext. Trigger Input Slope

Sets the polarity of the active slope of an externally applied instrument trigger.

This setting affects the TRIGGER input (BNC connector at the rear of the instrument or the AUX connector).

"Positive" activates the rising edge of the trigger signal.

"Negative" activates the falling edge of the trigger signal.

Remote command:

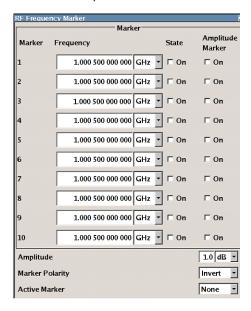
[:SOURce]:INPut:TRIGger:SLOPe on page 481

Edit Marker

Opens a dialog used for setting and editing the markers.

For a detailed description, see

- "RF Frequency Marker" on page 171
- Chapter 5.6.1, "LF Gen./Noise", on page 276


RF Frequency Block

Remote command:

n.a.

RF Frequency Marker

The "RF Frequency Marker" dialog is called via the EDIT MARKER button in the "RF Frequency Sweep" dialog. Up to ten frequency markers can be defined. The level of the marker signal at the MARKER output changes according to the selected polarity when the frequency mark is reached. For each of these markers an amplitude marker can be activated in addition. If activated, the marker signal is attenuated by the set amplitude when the frequency mark is reached. Only one marker is output at the MARKER output at one time.

Marker - RF Frequency Marker

Displays the marker index. The active marker is selected by this index.

Remote command:

n.a.

Frequency - RF Frequency Marker

Enters the frequency for the corresponding marker. If the marker is activated, the signal level at the MARKER output changes according to the set polarity on reaching the entered frequency.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:FREQuency on page 562

State - RF Frequency Marker

Switches on or off the selected marker. If on, the marker is output at the MARKER output on reaching the mark.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:FSTate on page 562

RF Frequency Block

Amplitude Marker - RF Frequency Marker

Activates or deactivates the selected amplitude marker. If activated, the level is reduced by the amplitude entered under Amplitude - RF Frequency Marker on reaching the mark.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:PSTate on page 562

Amplitude - RF Frequency Marker

Sets the amplitude marker attenuation. This value is valid for all markers.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:AMPLitude on page 561

Marker Polarity

Selects the polarity of the MARKER output signal.

The user-programmable marker signal can be used for brightness control of an oscilloscope. The output becomes active when the sweep run has reached the marker. Up to 10 markers can be set to mark positions in the sweep run. The duration of the active signal is equal to the dwell time (DWELL) of a step.

Remote command:

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity on page 568

Active Marker - RF Frequency Marker

Selects the active marker. The active marker is output with a higher voltage than all other markers.

Remote command:

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:ACTive on page 561

5.3.6 List Mode

Similar to a sweep, a series of previously defined frequency and level points is processed in List mode. In contrast to a sweep, however, a list with freely selectable value pairs (frequency and level) can be created. The value range for frequency and level covers the entire configurable value range of the instrument.

Interactions between List mode and other operating modes or settings

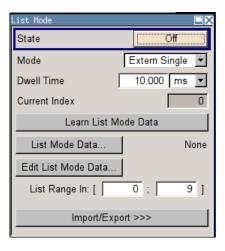
- List mode and sweeps can not be activated simultaneously, they deactivate each other.
- Activating the list mode instantly disables NRP-Z Level Control.
 A running list mode blocks "NRP-Z Level Control". It can not be activated

The lists can be created in the "List Editor". Each list is stored in its own file with the predefined file extension *.lsw. The name of the list file can be freely selected. The files are loaded from the "Lists..." file manager. Externally created tables with pairs of frequency and level values can be converted into List files using the import function. The external files must have the file extension *.txt or *.csv. These file formats are

RF Frequency Block

provided e.g. by the Microsoft®Excel program. The separators for table columns and for decimal floating-point numerals can be set. In addition, internally created List data can be exported into ASCII files using the export function.

The necessary hardware settings are calculated the first time a list is processed. With long dwell times, this calculation can be performed while the list is being processed; the entered dwell times are observed. With very short dwell times, calculation of the hardware settings increases the dwell time for the initial processing cycle; the entered value is only observed from the second processing cycle onwards. In this case a message appears to inform the user that there is a deviation between the current and set dwell times. No further calculations are required after the first run through a list. The current dwell times will definitely no longer deviate from the set dwell times.


The list is processed from the beginning to the end of the list (modes "Auto", ("External") "Single", ("External") "Step").

5.3.6.1 List Mode Dialog

To open the "List Mode" menu, select "RF Frequency> Configure > List Mode" or use the MENU key under "RF Frequency".

The menu is used to activate/deactivate the operating mode List, to create, select and activate the lists, and to select the trigger mode and the dwell time.

General Settings

State - List Mode

Activates/deactivates the List mode. The currently selected list is processed.

In case of a new or modified list, the necessary hardware settings are automatically determined on activation of the list mode. The data determined in this way is stored along with the list and is available whenever the list is used again.

This means that when activating the list mode, the system checks whether any hardware settings are present. If so, the list is started immediately, but if not they are automatically determined (the list is learnt).

A "Learn List Mode Data" button is available for deliberately activating list learning.

RF Frequency Block

Note: Activating the list mode automatically deactivates all sweeps. During list mode the frequency and level indications do not display the currently set values.

Remote command:

[:SOURce<hw>]:FREQuency:MODE on page 475

Mode - List Mode

Selects the cycle mode of the List mode.

"Auto"

Cycle from the beginning to the end of the list with automatic restart at the beginning. If a different mode was activated prior to the Auto mode, the cycle continues from the beginning of the list. The duration of a list step is determined by the set dwell time.

Button "Reset" restarts the list at the starting point.

"Single"

Single cycle from the beginning to the end of the list. If "Single" is selected, the cycle is not started immediately. The "Execute Single" button appears under the "Mode" line. The cycle is started with this button. The duration of a list step is determined by the set dwell time. Button "Reset" restarts the list at the starting point.

"Step"

Manual, step-by-step processing of the list. Activating "Step" stops the current list and the cursor moves to the value displayed for "Current Index". It is now possible to scroll up and down in the list in discrete steps by varying the index. The duration of a list step is determined by the time between two index entries. Button "Reset" restarts the list at the starting point.

"Extern Single"

Single cycle from the beginning to the end of the list as with "Single", but started by an external trigger.

The external trigger signal is input at the TRIGGER or AUX connector on the rear of the instrument.

Button "Reset" restarts the list at the starting point.

"Extern Step"

Step-by-step cycle using the external trigger signal. Each trigger event starts a single step. The duration of a list step is determined by the time between two trigger events.

The external trigger signal is input at the TRIGGER or AUX connector on the rear of the instrument.

Button "Reset" restarts the list at the starting point.

Remote command:

```
[:SOURce<hw>]:LIST:MODE on page 517
[:SOURce<hw>]:LIST:TRIGger:SOURce on page 519
```

Execute Single - List Mode

Triggers the list manually. This button is available only if mode "Single" is selected.

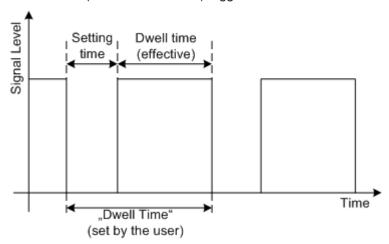
Remote command:

[:SOURce<hw>]:LIST:TRIGger:EXECute on page 519

RF Frequency Block

Reset - List Mode

Resets the list to the starting point.


Remote command:

[:SOURce<hw>]:LIST:RESet on page 518

Dwell Time - List Mode

Enters the dwell time. The dwell time determines the duration of a list step in list operating modes "Auto", "Single" and "Extern Single". In these modes a complete list is processed either once or continuously.

In list operating modes "Step" and "Extern Step", the set dwell time does not affect signal generation. In this case, the duration of a list step is determined by the time between two (internal or external) trigger events.

The "Dwell Time" set by the user is used as the step time of the list mode. The effective net dwell time is shorter, reduced by the setting time. This setting time may be greater than the time specified in the data sheet.

Remote command:

[:SOURce<hw>]:LIST:DWELl on page 514

Current Index - List Mode

Sets the list index in "Step" mode.

Remote command:

[:SOURce<hw>]:LIST:INDex on page 515

Learn List Mode Data... - List Mode

Starts the determination of the hardware setting for the selected list. The data determined in this way is stored along with the list.

It may be necessary to deliberately activate list learning in the event of greatly altered environmental conditions that require new hardware settings.

If this is not done, a previously learned hardware setting will continue to be used when list mode is switched on ("State = On"). If no setting is available, e.g. when the list is used for the first time, learning is automatically activated.

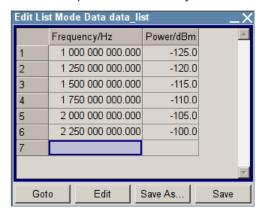
Remote command:

[:SOURce<hw>]:LIST:LEARn on page 517

RF Frequency Block

List Mode Data... - List Mode

Calls the "File Select" menu for selecting and creating a list or the "File Manager".



Remote command:

```
[:SOURce<hw>]:LIST:SELect on page 519
[:SOURce<hw>]:LIST:DELete on page 509
[:SOURce<hw>]:LIST:DELete:ALL on page 510
```

Edit List Mode Data... - List Mode

Calls the editor for editing the selected list. A list consists of any number of frequency/ level value pairs. The currently selected list is displayed.

"Frequency / Enter the frequency of the frequency/power value pair. Hz"

Remote command:

[:SOURce<hw>]:LIST:FREQuency on page 514

"Power /dBm" Enter the level of the frequency/power value pair.

Remote command:

[:SOURce<hw>]:LIST:POWer on page 517

"Goto" Selects row for editing.

If "Goto row" is selected, a window opens for entering the requested row.

RF Frequency Block

"Edit" Calls a selection of possible actions described below.

"Insert Row" Inserts a new row before the marked row.

"Insert Range" Inserts new rows before the marked row. The number of rows to be inserted can be defined in an entry window.

"Fill...." Opens a sub menu for defining a set of list values to be automatically

entered in the List Mode table (see Chapter 5.3.6.2, "Filling the List

Mode Data automatically", on page 180).

"Delete Row" Deletes the marked row.

"Delete Allows to delete any number of rows starting with the marked row.

Range..." The number of rows to be deleted can be defined in an entry window.

"Save as" Open the file menu to save the list under a new name.

Each list is saved to the R&S SMF CompactFlash™ Card as a separate file with the file prefix *.lsw. The file name and the directory to

which the file is saved are user-selectable.

"Save" The list is saved under its current name.

List Range In - List Mode

Defines an index range in the current list by setting the start and stop index. Only the values in the selected index range are processed in List mode, all other list entries are ignored.

Remote command:

```
[:SOURce<hw>]:LIST:INDex:STARt on page 516
[:SOURce<hw>]:LIST:INDex:STOP on page 516
```

Ext. Trigger Input Slope

Sets the polarity of the active slope of an externally applied instrument trigger.

This setting affects the TRIGGER input (BNC connector at the rear of the instrument or the AUX connector).

"Positive" activates the rising edge of the trigger signal.

"Negative" activates the falling edge of the trigger signal.

Remote command:

```
[:SOURce]:INPut:TRIGger:SLOPe on page 481
```

RF Frequency Block

Attenuator Settings

For instruments equipped with a step attenuator, setting of the parameters is provided in the "Attenuator Settings" section.

Mode - Attenuator Settings

Sets the attenuator mode at the RF output.

"Auto" The mechanical attenuator switches in steps of 10 dB at fixed points.

"Fixed" The attenuator is fixed at the current position.

Remote command:

:OUTPut<hw>:AMODe on page 387

Attenuation - Attenuation Settings

Sets the attenuation. To enter a value in this field, the attenuator mode Fixed has to be selected. If Auto is selected, this field is read-only.

Remote command:

```
[:SOURce]:POWer:ATTenuation on page 529
```

Fixed Range in (PEP): - Attenuation Settings

Displays the level range in which the level is set without interruption for the attenuator mode Fixed setting.

Remote command:

```
:OUTPut<hw>:AFIXed:RANGe:LOWer? on page 386
:OUTPut<hw>:AFIXed:RANGe:UPPer? on page 387
```

RF OFF Mode - Attenuation Settings

Selects the mode of the mechanical attenuator, when the RF signal is switched off.

Note: This feature is only available when the instrument is equipped with one of the mechanical attenuator options, i.e. either option R&S SMF-B26 or R&S SMF-B27.

The setting of the RF OFF mode is not affected by an instrument preset (PRESET key), *RST and the "Save/Recall" function. This parameter is influenced only by the Factory Preset.

"Normal" The current attenuation remains when the RF signal is switched off

and thus provides fast and wear-free operation.

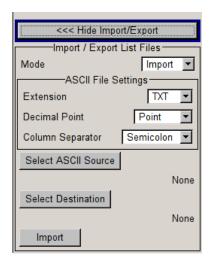
"Attenuated" The attenuation is set to maximum when the RF signal is switched

off. This setting is recommended for applications that require a high

level of noise suppression.

Remote command:

```
[:SOURce<hw>]:POWer:ATTenuation:RFOFf:MODE on page 529
```


Import/Export

Lists can be imported from externally created files or exported into text or CSV-files. The import/export settings are available after clicking the "Import/Export" button.

Import/Export - List Mode

Expands the menu with the area for import and export of list mode files.

RF Frequency Block

Externally edited Excel tables with frequency/level pairs can be imported as text or CSV-files and used for list mode.

On the other hand, internally created list mode lists can be exported as text or CSV-files.

Mode - List Mode

Selects if list mode lists should be imported or exported. The settings offered below depend on the selected mode.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:MODE on page 513

Extension - List Mode

Selects the file extension of the ASCII file to be imported or exported. Selection TXT (text file) or CSV (Excel file) is available.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:AFILe:EXTension on page 511

Decimal Point - List Mode

Selects the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:AFILe:SEParator:DECimal on page 512

Column Separator-List Mode

Selects the separator between the frequency and level column of the ASCII table.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:AFILe:SEParator:COLumn on page 512

Select ASCII Source / Destination - List Mode

Calls the "File Manager" for selecting the ASCII file to be imported into a list mode list (source) or the ASCII file the list mode list is exported (destination) in.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:AFILe:SELect on page 511

RF Frequency Block

Select Destination / Source - List Mode

Calls the "File Manager" for selecting the list mode list to be exported (source) into an ASCII file or the destination for the ASCII file to be imported (destination) in.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:SELect on page 513

Import / Export - List Mode

Starts the export or import of the selected file.

When import is selected, the ASCII file is imported as list mode list.

When export is selected, the list mode list is exported into the selected ASCII file.

Remote command:

[:SOURce<hw>]:LIST:DEXChange:EXECute on page 513

5.3.6.2 Filling the List Mode Data automatically

The "Fill List Mode Data" menu enables you to automatically set the values in the List Mode table.

The start line and the number of rows to be filled are defined under "From" and "Range".

The column to be filled is selected under "Select column to fill". Depending on the selection here, the default for start, end, and increment value are set. As the settings are interdependent, a change of one parameter may result in the automatic change of one or more of the other parameters.

The filling of the column with the selected value settings is started with button "Fill".

The list entries are only computed when the "Fill" button is pressed.

From

Sets the start value of the index range.

Remote command:

n.a.

RF Level

Range

Sets the range for filling the table.

Remote command:

n.a.

Select column to fill

Selects either the frequency or the level column to be filled with the value defined below.

Remote command:

n.a.

Start value

Sets the start value for the frequency or the level entries.

Remote command:

n.a.

End value

Sets the end value for the frequency or the level entries.

Remote command:

n.a.

Increment value

Sets the increment for the frequency or the level entries.

Remote command:

n.a.

Fill

Fills the selected column in the set range with values, starting with the start value and using the set increment.

Remote command:

n.a.

5.4 RF Level

5.4.1 Overview of RF Level

Message "Level overrange/underrange"

If this message appears in the status line, the set level ("Level") is out of range (see data sheet).

In this case, the signal level at the output can deviate from the set value.

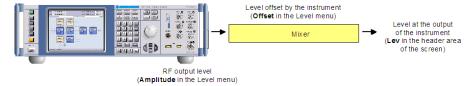
RF Level

The value of the RF level is displayed in the level field in the header of the instrument's display and the easiest way to set the RF level is to set it directly in this field.

Be aware, that there is a difference between the RF level displayed in the header and the RF output level set in the "Level/EMF" dialog of the "RF" block.

5.4.1.1 RF level vs. RF output level

The level entered and displayed in the "Level" field takes the offset of any downstream attenuators/amplifiers into consideration by way of calculation. This means that with a level offset the level displayed in the header does not correspond to the level at the RF output, but rather to the level at the output of the downstream instrument.


This allows the desired level at the output of downstream instruments to be entered. The R&S SMF changes the RF output level according to the set offset.

However, the level entered and displayed in the "Level" menu of the "RF" function block always corresponds to the RF output level. Any level offset is not taken into consideration.

The level offset is entered in the "Level" menu. Here it is also possible to set the level without taking the offset into consideration, and to make other settings, such as level offset, attenuator mode, power-on state.

The correlation is as follows:

"Level" (in header) = "RF output level" (Level in menu) + "Level offset" (Offset in menu)

5.4.1.2 Setting the RF level

To change the RF level, press the LEVEL key and enter the desired level. Changes to the RF level have an immediate effect (without confirmation with the Enter key) on the output signal.

RF Level

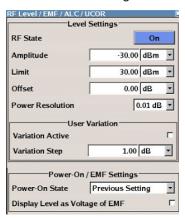
Enters the RF level, considering the level offset (see Chapter 5.4.1.1, "RF level vs. RF output level", on page 182).

dBm, dBuV, mV and uV can be used as the level units. The 4 unit keys are labeled with these units.

Note: The SCPI command sets the level of the "Level" display, i.e. an entered level offset is taken into consideration in the level value.

Remote command:

[:SOURce<hw>]:POWer[:LEVel][:IMMediate][:AMPLitude] on page 530


RF Level

5.4.2 RF Level Dialog

- To access the dialog for configuring the RF signal level, perform one of the following:
 - Select "Level Control > config... > Level".
 - Press the MENU key and select "Level Control > Level".

The combined dialog is divided into several sections.

The offset-free level, level offset, level limit and power resolution are set in the top section of the dialog.

In section "User Variation", you can determine the step size for adjusting the level with the rotary knob (with "Variation Active On").

The power-on behavior of the instrument and the level display in the display header are set in the "Power-On / EMF Settings" section (see Chapter 5.4.3, "Power-On/EMF Settings", on page 185).

The remote commands required to define the settings are described in Chapter 7.13.15, "SOURce:POWer Subsystem", on page 526.

5.4.2.1 Level Settings

The offset-free level, level offset, level limit and power resolution are set in the top section of the dialog.

RF Output State

Activates the RF output signal by

- selecting the RF checkbox in the "Configure" dialog of the "RF Frequency" block.
- enabling the RF State in the "RF Level/EMF/ALC/UCOR" dialog.

Remote command:

:OUTPut<hw>[:STATe] on page 389

Amplitude

Sets the RF level of the RF output connector.

The level entered and displayed here corresponds to the level at the RF output, that means any offset entry is not taken into consideration.

RF Level

Note: Status bar values blanked?

For security concerns or certain operating modes, the instrument blanks the frequency and level display in the status bar.

• *********** GHz ***** dBm

The display has been disabled for security reasons, see Annotation Frequency and Annotation Amplitude.

• GHz ---_- dBm

The display is disabled when list mode is running, see "State - List Mode" on page 173.

Remote command:

[:SOURce<hw>]:POWer:POWer on page 533

Note: The SCPI command [:SOURce<hw>]:POWer[:LEVel][:IMMediate][: AMPLitude] sets the level of the "Level" display, that is the level containing offset.

Limit - RF Level

Sets an upper limit for the RF output power.

You can use it to protect your DUT from damage due to high input power. If you enter an RF level above this value, the instrument limits the output power to this specified value, and generates a warning message.

However, the level indication in the status bar is not affected.

Note: The limit value is always effective, regardless of whether you work with "NRP-Z Power Control" or not.

The value is not affected by an instrument preset (PRESET key), *RST and the "Save/Recall" function. It is influenced only by the Factory Preset and the factory value is equal to maximum level.

Remote command:

[:SOURce<hw>]:POWer:LIMit[:AMPLitude] on page 531

Offset (Level)

Sets the level offset relative to the RF level.

The level offset of a downstream instrument (for example an attenuator or amplifier) is entered.

The entry does not change the value of the RF level at the RF output. It only changes the RF level displayed in the display header. The value of the RF level in the header corresponds to the level at the output of the downstream instrument.

Remote command:

```
[:SOURce<hw>]:POWer[:LEVel][:IMMediate]:OFFSet on page 530
```

Power Resolution

Selects the resolution for the level settings.

Remote-control command: SOUR: POW: RES 0.01

Remote command:

[:SOURce<hw>]:POWer:RESolution on page 533

RF Level

5.4.2.2 User Variation

If the level is set using the rotary knob, the step width is defined in the "User Variation" section.

Variation Active

Activates the user-defined step width used when varying the level value with the rotary knob.

"ON" The level value set with the rotary knob is varied using the user-

defined step width which is entered under "Variation Step".

"OFF" The level value set with the rotary knob is varied in steps of one unit

at the cursor position (standard operating mode).

Remote command:

[:SOURce<hw>]:POWer:STEP:MODE on page 537

Variation Step

Sets the user-defined step width for entering the RF level using the rotary knob. Level variation with this step width must also be activated with "Variation Active".

Remote command:

```
[:SOURce<hw>]:POWer:STEP[:INCRement] on page 536
```

5.4.2.3 External Level Adjustment

The external level adjustment provides information about the data that has been used for calibrating the RF level.

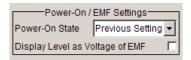
By default the instrument uses correction data obtained in the factory before delivery. In exceptional cases, you can determine the calibration values with an R&S NRP power sensor, and use these values for the external level correction. This feature is a protected function (see Service Manual, chapter 2, "Adjustment").

Adjustment Data

Indicates what data has been used for level calibration.

Remote command:

```
:CALibration<hw>:LEVel:EXTern:DATA on page 361
```


5.4.3 Power-On/EMF Settings

The power-on behavior of the R&S SMF and the level display in the display header are set in the "Power-On / EMF Settings" section of the "RF Level/EMF/ALC/UCOR" dialog.

To open the dialog, select "Level Control > Configure > Level" or use the MENU key under "Level Control".

RF Level

Power-On State - RF Signal

Selects the state which the RF output is to assume after the instrument is switched on.

"RF Off" The output is deactivated when the instrument is switched on.

"Previous Set- When the instrument is switched on, the output assumes the same

ting" state as it had when the instrument was switched off.

Remote command:

:OUTPut<hw>[:STATe]:PON on page 389

Display Level as Voltage of EMF - RF Level

Activates display of the signal level as voltage of the EMF (no-load voltage). If this setting is deactivated, the level is displayed as a voltage over a 50 Ohm load.

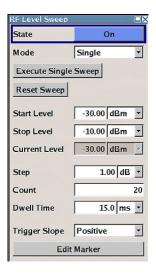
Note: This setting is not affected by an instrument preset (PRESET key), *RST) or the "Save/Recall" function. Only the Chapter 5.2.3.21, "Factory Preset", on page 134 resets the setting.

Remote command:

[:SOURce<hw>]:POWer:EMF:STATe on page 529

5.4.4 RF Level Sweep

To open the "Level Sweep" menu, select "Level Control > Configure > Level Sweep" or use the MENU key under "Level Control".


The "RF Level Sweep" dialog is used to activate and configure a sweep for the RF level. To open the dialog, select "Level Control > Configure > Level Sweep" or use the MENU key under "Level Control".

5.4.4.1 RF Level Sweep Settings

In the top section, the RF level sweep is activated and the sweep mode is selected. The buttons are used to reset the level sweep (all sweep modes) or to execute the level sweep ("Single" mode).

The sweep range, sweep spacing and dwell time are set in the bottom section.

RF Level

State - Level Sweep

Activates Level Sweep mode.

Note:

Activating a sweep mode automatically deactivates other sweeps and the list mode.

Remote command:

[:SOURce<hw>]:POWer:MODE on page 533

Mode - Level Sweep

Selects the level sweep instrument operating mode and the sweep mode.

If you change the sweep mode during the execution, the signal generator stops the sweep and starts with the next trigger event at the initial value.

The "Reset Sweep" button sets the sweep to the start value.

"Auto" Sets an automatically repeated sweep cycle.

Example:

SOUR:SWE:POW:MODE AUTO TRIG:PSW:SOUR AUTO SOUR:POW:MODE SWE

"Single"

Sets a single sweep cycle. The sweep is triggered by the "Execute Single Sweep" button, or by means remote trigger commands, e.g. ${}^{\star}\text{TRG}$.

Example:

SOUR:SWE:POW:MODE AUTO
TRIG:PSW:SOUR SING
SOUR:POW:MODE SWE
SOUR:SWE:POW:EXEC

RF Level

"Step"

Sets a step-by-step sweep cycle.

If this mode is activated, the cursor moves to the value displayed for "Current Level". Each sweep step is triggered by a variation of the value in the "Current Level" entry window. The step width is set below at entry field "Step".

If this mode is activated, the cursor moves to the value displayed for "Current Level". If a different sweep mode was activated prior to the "Step" mode, the current sweep is stopped. The step sweep starts at the current level value.

Example:

SOUR:SWE:POW:MODE MAN SOUR:SWE:POW:STEP 0.5 SOUR:POW:MODE SWE SOUR:POW:MAN -16

The value entered with command SOUR: SWE: POW: STEP sets the step width.

The value entered with command SOUR: POW: MAN has no effect, the command only triggers the next sweep step. However, the value has to be in the currently set sweep range (start to stop). In remote control only a step-by-step sweep from start to stop frequency is possible.

"Extern Single"

Sets a single sweep cycle. The sweep is triggered by an external trigger signal.

Refer to the description of the rear panel for information about the connectors for external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

SOUR:SWE:POW:MODE AUTO
TRIG:PSW:SOUR EXT
SOUR:POW:MODE SWE (External trigger)

"Extern Step"

Sets a step-by-step sweep cycle. Each sweep step is triggered by an external trigger signal (trigger source as described under "Extern Single"). The step width corresponds to the step width of the rotary knob.

Example:

SOUR:SWE:POW:MODE STEP
SOUR:SWE:POW:STEP 0.5
TRIG:PSW:SOUR EXT
SOUR:POW:MODE SWE (External trigger)

RF Level

"Extern Start/Stop"

Sets an automatically repeated sweep cycle that is started, stopped and restartet by subsequent external trigger events.

The first external trigger signal starts the sweep (Start).

The next external trigger signal stops the sweep at the current frequency (Stop).

The third external trigger signal starts the sweep at the start frequency (Start).

The external trigger signal is input at the rear of the instrument (BNC connector TRIGGER).

Example:

```
SOUR:SWE:POW:MODE AUTO
TRIG:PSW:SOUR EAUT
SOUR:POW:MODE SWE (External trigger)
```

Remote command:

```
[:SOURce<hw>]:SWEep:POWer:MODE on page 570
:TRIGger<hw>:PSWeep:SOURce on page 598.
[:SOURce<hw>]:POWer:MODE on page 533
```

Specific Sweep Parameters

The sweep parameters described in this topic are only available for particular emulation languages.

For details, see 1GP92 "Remote Emulation with the R&S SMF microwave signal generator".

Mode ← Specific Sweep Parameters

Selects the RF frequency sweep mode.

("Auto" = timer controlled, "Manual" = manually controlled)

Repeat ← Specific Sweep Parameters

Sets the repetition mode.

```
("On" = continuously; "Off" = once)
```

Start Trigger — Specific Sweep Parameters

Selects the mode to initiate a sweep.

("Auto" = starts immediately; "Single" = starts with a command (Bus); "External" = starts with an external trigger signal)

Point Trigger ← Specific Sweep Parameters

Selects the mode to trigger the progress of each step.

```
("Auto" = immediately; "Single" = remotely (Bus); "External" = external signal)
```

Reset Sweep - Level Sweep

Resets the sweep. The start level is set and the next sweep starts from there.

Remote command:

```
[:SOURce<hw>]:SWEep:RESet[:ALL] on page 574
```

RF Level

Execute Single Sweep - Level Sweep

Triggers the sweep manually. A manual sweep can only be triggered if "Mode Single" is selected.

Example:

```
SOUR:SWE:POW:MODE AUTO
TRIG:PSW:SOUR SING
SOUR:POW:MODE SWE
SOUR:SWE:EXEC
```

Remote command:

```
[:SOURce<hw>]:SWEep:POWer:EXECute on page 569
:TRIGger<hw>:PSWeep[:IMMediate] on page 599
:TRIGger<hw>[:SWEep][:IMMediate] on page 600
```

Start Level - Level Sweep

Sets the start level.

Remote command:

```
[:SOURce<hw>]:POWer:STARt on page 536
```

Stop Level - Level Sweep

Sets the stop level.

Remote command:

```
[:SOURce<hw>]:POWer:STOP on page 537
```

Current Level - Level Sweep

Displays the current level.

If "Step" is set, the level for the next level step of the sweep is entered here.

Remote command:

```
[:SOURce<hw>]:POWer:MANual on page 532
```

Shape - RF Level Sweep

Selects the cycle mode for a sweep sequence (shape).

"Sawtooth" One sweep runs from the start level to the stop level. The subsequent

sweep starts at the start level again, i.e. the shape of sweep

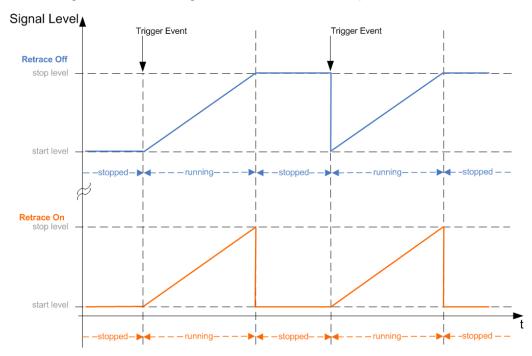
sequence resembles a sawtooth.

"Triangle" One sweep runs from start to stop level and back, i.e. the shape of

the sweep resembles a triangle. Each subsequent sweep starts at the

start level again.

Remote command:


```
[:SOURce<hw>]:SWEep:POWer:SHAPe on page 572
```

Retrace - RF Level Sweep

Activates that the signal changes to the start level value while it is waiting for the next trigger event. It allows you to shift down the power during the waiting period.

RF Level

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single", see Mode - Level Sweep.

Remote command:

[:SOURce<hw>]:SWEep:POWer:RETRace on page 572

Step - Level Sweep

Sets the step width for the individual sweep steps. This entry is effective for all sweep modes.

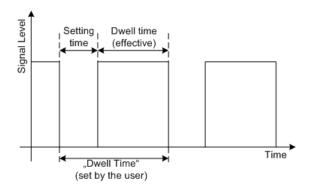
With the level sweep, the logarithmic step width is a constant fraction of the current level. This fraction is added to the current level. The logarithmic step width is entered in dB.

Remote command:

[:SOURce<hw>]:SWEep:POWer:STEP[:LOGarithmic] on page 573

Count - RF Level Sweep

Sets the number of sweep steps.


Remote command:

[:SOURce<hw>]:SWEep:POWer:POINts on page 571

Dwell Time - Level Sweep

Enters the dwell time and determines the duration of the individual sweep steps.

RF Level

The "Dwell Time" set by the user is used as the step time of the sweep. The effective net dwell time is shorter, reduced by the setting time. This setting time may be greater than the time specified in the data sheet.

Note:

It is recommended to switch off the display update for optimum sweep performance especially with short dwell times (see Chapter 5.2.3.8, "Display Update", on page 113).

Remote command:

[:SOURce<hw>]:SWEep:POWer:DWELl on page 569

Ext. Trigger Input Slope

Sets the polarity of the active slope of an externally applied instrument trigger.

This setting affects the TRIGGER input (BNC connector at the rear of the instrument or the AUX connector).

"Positive" activates the rising edge of the trigger signal.

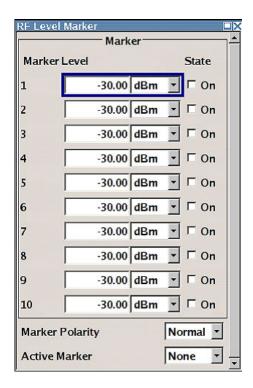
"Negative" activates the falling edge of the trigger signal.

Remote command:

[:SOURce]:INPut:TRIGger:SLOPe on page 481

Edit Marker - RF Level Sweep

Opens the "RF Level Marker" menu. This menu is used for setting and editing the markers. For a detailed description, see Chapter 5.4.4.2, "RF Level Marker", on page 192.


Remote command:

n.a.

5.4.4.2 RF Level Marker

The "RF Level Marker" dialog is called via the EDIT MARKER button in the "Level Sweep" dialog.

RF Level

Marker - RF Level Marker

Displays the index of the marker.

Remote command:

n.a.

Level - RF Level Marker

Enters the level for the corresponding marker. If the marker is activated, the signal level at the MARKER output changes according to the set polarity on reaching the entered level.

Remote command:

[:SOURce<hw>]:SWEep:POWer:MARKer<ch>:POWer on page 570

State - RF Level Marker

Switches in or off the selected marker. If on, the marker is output at the MARKER output on reaching the mark.

Remote command:

[:SOURce<hw>]:SWEep:POWer:MARKer<ch>:STATe on page 570

Marker Polarity

Selects the polarity of the MARKER output signal.

The user-programmable marker signal can be used for brightness control of an oscilloscope. The output becomes active when the sweep run has reached the marker. Up to 10 markers can be set to mark positions in the sweep run. The duration of the active signal is equal to the dwell time (DWELL) of a step.

Remote command:

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity on page 568

RF Level

Active Marker - RF Level Marker

Selects the active marker. The active marker is output with an higher voltage than all other markers.

Remote command:

[:SOURce<hw>]:SWEep:POWer:MARKer:ACTive on page 569

5.4.5 Automatic Level Control - ALC

Your signal generator is equipped with an automatic level control unit to obtain best RF level accuracy.

Automatic **L**evel **C**ontrol (ALC) is an adaptive control system to stabilize the RF output level. It continuously monitors the current level and adjusts it to keep a steady state over temperature and time.

ALC is active in almost all applications by default. However, **Pulse Modulation** with very small pulse widths excludes ALC, as the control loop would detect incorrect values and result in level deviations.

Also note that ALC may detect incorrect values in **multi-transmitter** test setups. If multiple generators are coupled, reverse power may affect the ALC readings. Based on incorrect values, ALC would have an impact on the signal to intermodulation ratio.

ALC States

The following description basically explains the ALC states and their principle of operation. In particular **ALC OFF (Sample & Hold)** gives an overview on the function in terms of the equipment of the generator.

The R&S SMF offers the ALC states:

- On enables ALC permanently, regardless of the currently selected mode.
- Off

deactivates ALC.

The instrument switches to **Sample & Hold (S&H)** state, which still allows to maintain a constant output level.

The following section explains the functionality of "Sample & Hold", to provide an overview and to indicate what is to be considered. "On" and "Auto" require no additional explanation. Furthermore, find the ALC state settings described in detail in State - ALC.

ALC OFF (Sample & Hold)

In "S&H" mode, the signal generator switches for a short period of time into CW mode and activates ALC. ALC adjusts the level to the set value and the generator holds the value (freeze). Then, the generator switches ALC off again and back to the operating mode.

RF output behavior during Sample & Hold depends on the configuration of your instrument. Instruments equipped with...:

a mechanical step attenuator

RF Level

By default, the mechanical step attenuator is not switched during S&H cycles to optimize the settling time. The instrument provides the output power for 3 ... 5 ms. However, you can affect the attenuation at the output by the setting "RF during Power Search" to "Minimum", see RF During Power Search - ALC. Then the generator decreases the level by 30 dB with the mechanical attenuator. Note that this may take a certain period of time.

The **mechanical step attenuator** is switched off. However, you can affect the attenuation at the output by the setting "RF during Power Search" to "Minimum", see RF During Power Search - ALC. Then, the generator adjusts the level with the mechanical attenuator, as described above. Note that mechanical attenuators take a certain period of time.

no step attenuator

The signal generator outputs the set level for 3 to 5 ms after level or frequency setting during a Sample & hold measurement.

Instruments equipped with one of the options R&S SMF-B26 or R&S SMF-B27 come without step attenuator.

The level control status is permanently displayed as a status message in the info line.

5.4.5.1 Automatic Level Control Settings

To open the "Automatic Level Control" dialog, select "Level Control" > "Configure" > "Automatic Level Control" or use the MENU key under "Level Control".

The combined dialog "RF Level / EMF / ALC / UCOR" is divided into the several sections and provides access to the "ALC" settings and to function "User Correction", see Chapter 5.4.7, "User Correction", on page 247).

External level control via the EXT ALC input is offered in addition to internal ALC (see Chapter 5.4.5.2, "External Level Control", on page 196).

State - ALC

Activates/deactivates internal level control.

"On" Activates ALC, regardless of the operating conditions.

This provides the highest level accuracy.

"Off (Sample & Hold)"

Deactivates internal level control.

Sample & hold closes the level control loop at every frequency and level change for a short period of time. The level control voltage is sampled and then clamped.

RF Level

Remote command:

[:SOURce<hw>]:POWer:ALC[:STATe] on page 528

RF During Power Search - ALC

Activates the mode for the mechanical step attenuator and for output during ALC power search.

"Normal" The RF output is active during power search.

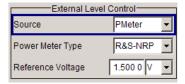
"Minimum" The RF output is inactive during power search.

Remote command:

:OUTPut<hw>:ALC:SEARch:MODE on page 387

Search Once - ALC

Forces the generator to execute level adjustment once, although the "Sample & Hold" mode is active.


Remote command:

[:SOURce<hw>]:POWer:ALC:SONCe on page 528

5.4.5.2 External Level Control

With external level control, the level control is performed using an external DC signal applied at the EXT ALC input. The signal can be provided either by a diode detector or a power meter. A reference voltage has to be entered for the desired level at the RF output of the generator.

The "External Level Control" dialog is part of the **Level...** dialog and is opened in the LEVEL CONTROL function block or using the "MENU" key under "Level Control".

Source - External Level Control

Selects the source for level control.

"Internal" The internal detector is used. The settings under ALC are valid (see

Chapter 5.4.5, "Automatic Level Control - ALC", on page 194).

"Diode" A diode detector is connected to the EXT ALC input. The RF level is

controlled by the external voltage provided by the detector. The reference voltage for the desired level at the RF output of the generator has to be entered below. See the specification of the detector for

details.

"PMeter" A power meter can be connected to the EXT ALC input. The RF level

is controlled by the external voltage provided by the power meter. The reference voltage for the desired level at the RF output of the generator has to be entered below. Please see the specification of

the power meter for details.

RF Level

Remote command:

[:SOURce<hw>]:POWer:ALC:SOURce on page 528

Power Meter Type - External Level Control

Selects the power meter that is used for external level control. This feature is only available if PMeter is selected in the Source field.

Remote command:

[:SOURce<hw>]:POWer:ALC:PMETer:TYPE on page 527

Reference Voltage - External Level Control

Sets the reference voltage for the desired level at the RF output of the generator. See the specification of the external source (diode detector or power meter) for details.

Remote command:

[:SOURce<hw>]:POWer:ALC:REFerence on page 527

5.4.6 Power Sensors

The R&S SMF supports R&S NRP-Z power sensors to measure the power of the output signal in the RF path or any freely selectable source. The generator performs up to four power measurements, with the sensors either directly connected, or via the R&S NRP-Z5 USB Sensor Hub.

The R&S NRP-Z5 USB Sensor Hub (high-speed USB 2.0) can host up to 4 R&S NRP-Z sensors and provides simultaneous internal and external triggering of all connected sensors. You can directly connect the R&S NRP-Z Sensors to the standard NRP sensor connectors of the hub. The hub is connected to the R&S instrument either with the R&S NRP-Z2 extension cable, or via USB using with the adapter cable R&S NRP-Z4. See also the R&S website http://www.rohde-schwarz.com in section "Power Meters & Voltmeters > R&S NRP-Z Sensors" for information on the sensor hub and the available accessories.

To connect an R&S NRP-Z sensor directly, the R&S SMF provides the SENSOR connector. A sensor connected there is always assigned as Sensor 1. Alternatively, you can connect a sensor at a USB interface, using one of the USB adapters R&S NRP-Z3 or R&S NRP-Z4.

The instrument automatically detects a connected R&S NRP-Z power sensor and indicates it in the NRP-Z Power Viewer dialog. In addition, you find device specific information on the connected sensor in Chapter 5.2.3.5, "NRP-Z Info/Update", on page 110. For information on the scope of your power sensor refer to the manual of your R&S NRP-Zxx power sensor.

For a more detailed analysis of the power of the RF signal, use the NRP-Z Power Analysis function. It enables you, e.g. to perform sweep measurements on the DUT, or analyse pulse data with the aid of a R&S NRP-Z81 power sensor.

RF Level

5.4.6.1 NRP-Z Power Viewer

The R&S SMF features the power viewer function for measuring or monitoring either the RF output power, or a freely selectable signal source with R&S NRP-Z power sensors.

The instrument can perform up to 4 power measurements simultaneously.

To connect the sensors you have the following options:

- connect the sensor directly at a USB connector
 To connect a sensor directly via USB, use one of the appropriate adapter cables
 R&S NRP-Z3 or R&S NRP-Z4.
- connect the sensor indirectly via USB using the R&S NRP-Z5 USB Sensor Hub.

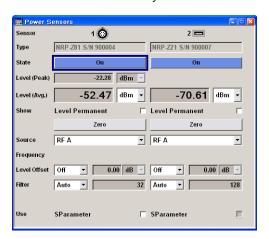
For the assignment to the available connectors, see Chapter 2, "Preparing for Use", on page 17.

A sensor continuously measures the average signal power of the selected source, such as an external signal, or the output signal of the signal generator with the RF level used as reference value. The signal generator shows the result in the NRP-Z Power Viewer Settings settings dialog, but you can also permanently display the readings in the block diagram.

Further functions of the R&S SMF related to R&S NRP-Z power sensors are:

- Acquisition of level correction data, see Chapter 5.4.7, "User Correction", on page 247.
 - The acquired level correction data is used to create and activate lists in which level correction values predefined by the user are freely assigned to RF frequencies. Correction is performed by the user-defined table values being added to the output level for the respective RF frequency.
- NRP-Z Level Control, see Chapter 5.4.6.2, "NRP-Z Level Control", on page 205.
 Note that "NRP-Z Power Viewer" automatically disables "NRP-Z Level Control", and vice versa.
- Sweep measurements on DUTs (see Chapter 5.4.6.3, "NRP-Z Power Analysis", on page 209). To perform pulse data analysis, use a suitable power sensor, like the R&S NRP-Z81.
- The software version of the connected power sensor can be retrieved by means of the remote control command SENSe<ch>[:POWer]:TYPE? on page 438.
 Use the Chapter 5.2.3.5, "NRP-Z Info/Update", on page 110 dialog to update the sensor software.

"NRP-Z Power Viewer" automatically disables NRP-Z Level Control and NRP-Z Power Analysis, and vice versa.


NRP-Z Power Viewer Settings

RF Level

➤ To access the dialog for configuring the RF signal level, perform one of the following:

- Select "Level Control > config... > NRP-Z Power Viewer".
- Press the MENU key and select "Level Control > NRP-Z Power Viewer".

"Sensor 1" is firmly assigned to the sensor on the circled SENSOR socket. If no sensor is connected to this socket, channel 1 remains not assigned. Sensors 2...4 are assigned to the sensors at the USB connectors, according to their sequence of connection.

When you connect your power sensor(s) via the R&S NRP-Z5 USB sensor hub, each channel of the hub is firmly assigned to the associated sensor channel in the generator.

The remote commands required to define the settings are described in Chapter 7.12, "Power Sensor Measurement Subsystems", on page 389.

Sensor

Indicates the connector used for the detected sensors.

In remote control, the sensors are set up using the \mathtt{SENSe} commands. The remote measurement is triggered by the \mathtt{READ} query which also provides the measurement results.

The sensor is selected by suffix 1, 2, 3 or 4 in key word SENSe or READ of the command header.

Suffix 1 denotes the sensor connected to SENSOR, suffix 2 the one at the first USB interface, and suffix 3 and 4 are assigned to the sensors at the following USB interfaces. The suffix is identical to the index which is assigned automatically to each sensor upon connection.

In order to detect all connected sensors the state of all four connectors (i.e. SENsor1/SENSor2/SENSor3/SENSor4) must be checked.

Note: The software version of the connected power sensor can be retrieved by means of the remote control command : SENS: POW: TYPE?.

Use the "Setup >" Chapter 5.2.3.5, "NRP-Z Info/Update", on page 110 dialog to update the sensor software.

RF Level

Remote command:

```
SENSe<ch>[:POWer]:STATus[:DEVice]? on page 405
```

Type

Indicates the type and the serial number of the connected R&S NRP-Z power sensor. The sensor type is automatically detected.

Remote command:

```
SENSe<ch>[:POWer]:TYPE? on page 438
SENSe<ch>[:POWer]:SNUMber? on page 404
```

State

Activates/deactivates level measurement by the power sensor.

The local state is set with the INIT command. Switching the local state off enhances the measurement performance.

In remote control, the sensors are set up using the <code>SENSe</code> commands. The remote measurement is triggered by the <code>READ</code> query which also provides the measurement results. The state is not influenced by these commands, measurements results can be retrieved with local State on or off.

The sensor is selected by suffix 1, 2, 3 or 4 in key word SENSe or READ of the command header.

Suffix 1 denotes the sensor connected to SENSOR, suffix 2 the one at the first USB interface, and suffix 3 and 4 are assigned to the sensors at the following USB interfaces. The suffix is identical to the index which is assigned automatically to each sensor upon connection.

In order to detect all connected sensors the state of all four connectors (i.e. SENsor1/SENSor3/SENSor4) must be checked.

To query the availability of a sensor at a given connector, use the command SENSe<ch>[:POWer]:STATus[:DEVice]? on page 405.

Remote command:

```
:INITiate<ch>[:POWer]:CONTinuous on page 395
```

Level (Peak)

With certain power sensors only, for example R&S NRP-Z81.

Indicates the measured peak level value with the selected unit.

Remote command:

```
:READ<ch>[:POWer]? on page 396
```

Level (Avg.)

Indicates the measured level value with the selected unit.

Remote command:

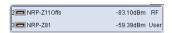
```
:READ<ch>[:POWer]? on page 396
```

Unit

Selects the unit used for result display.

The power sensor provides the measured value in Watt.

RF Level


In which unit the measured value is indicated is selected here and might be Watt, dBm or dBuV.

Remote command:

:SENSe<ch>:UNIT[:POWer] on page 439

Permanent Display State

Activates the permanent indication of the power measurement result in the upper right corner of the block diagram. The instrument shows the type of sensor, the corresponding connector, the measurement source and - if set - the offset.

It is possible to switch the permanent display active for several sensors. The instrument indicates the values of a maximum of two sensors simultaneously, in ascending order of connected channels. If you activate the display of a third sensor, the instrument fades out the values of the last highest channel number automatically.

Remote command:

:SENSe<ch>[:POWer]:DISPlay:PERManent:STATe on page 400

Display Priority

Determines whether the instrument displays the measured average or the peak power permanently on the screen.

To select the peak power display, it is required that the R&S NRP-Zxx sensor supports this feature. On power-on or connecting a sensor the average power value is set by default

To enable the permanent display in the block diagram, select Permanent Display State.

Remote command:

:SENSe<ch>[:POWer]:DISPlay:PERManent:PRIority on page 400

Zero - Power Sensors

Activates the auto zero function.

Zeroing calibrates the external power sensor by adjusting its reading at zero signal power. For this purpose, the RF power source must be switched off or disconnected from the sensor (see tips below). R&S power sensors automatically detect the presence of any significant input power. This aborts zeroing and generates an error message. Zeroing can take a few seconds, depending on the sensor model; refer to the documentation of your external power sensor for more information.

Tips for zeroing

Zeroing should be performed:

- During warm-up after switching on or connecting the instrument
- After a substantial change of the ambient temperature
- After fastening the power sensor module to an RF connector at high temperature
- After several hours of operation
- When very low-power signals are to be measured, e.g. less than 10 dB above the lower measurement limit.

RF Level

 Switch off the RF power source for zeroing; do not disconnect it from the power sensor. In this way you will maintain the thermal equilibrium, and zeroing will also compensate for the noise superimposed on the measured signal (e.g. from a broadband amplifier).

Remote command:

```
:SENSe<ch>[:POWer]:ZERO on page 439
```

Source

Selects the source for measurement.

"RF" Measurement source is the RF signal of the generator. The RF fre-

quency is used as the measurement frequency of the sensor and the

corresponding correction factor is used.

In this mode the RF frequency of the generator is send to the sensor

automatically if changed.

"User" Measurements source is any freely selectable source. The frequency

is entered manually under frequency (e.g. for measurement of ampli-

fier gain with 2 sensors).

Remote command:

```
:SENSe<ch>[:POWer]:SOURce on page 405
```

Frequency

Source User only

Enters the frequency for measurement source "User".

Remote command:

```
:SENSe<ch>[:POWer]:FREQuency on page 403
```

Level Offset

Activates and defines a level offset which is added to the measured value. This allows e.g. an attenuator in the signal path to be considered. The offset is always entered in dB, irrespective of the selected unit for result display.

Remote command:

```
:SENSe<ch>[:POWer]:OFFSet:STATe on page 404
:SENSe<ch>[:POWer]:OFFSet on page 404
```

Filter

Determines the length of the filter used for the measurement. The filter length affects the measurement time directly.

The averaging filter is used to reduce fluctuations in the measured result to the extent desired. Such fluctuations can be caused by inherent noise of the measuring instrument, modulation of the measurement signal or beats from the superposition of adjacent carriers. A more stable display has to be traded off against longer measurements. The measurement result is obtained from a two-stage averaging process.

Note: Longer measurements do not mean that it takes longer to display a new result, but rather that it takes longer for the result to settle when the power changes.

RF Level

Measurements are continuously repeated in a predefined time window. The measurement result is obtained by averaging the measured values for the last 2N time windows. The number N is the filter length, the factor of 2 arises because the output signals from the microwave detector to suppress low-frequency noise are chopped at the same rate as the time windows, which means that an independent measured value can only be obtained from two consecutive values. As the filter length is the multiplier for the time window it directly influences the measurement time.

The filter length can be selected automatically or can be manually set to a fixed value. As a preliminary, you should always check if the auto mode is giving satisfactory results because you will always have to adjust an optimal, manual filter-length setting if the power is not constant.

Selection "Fixed Noise" is offered for achieving defined measurement accuracy.

"Auto"

The filter length is automatically selected and adapted to the currently measured value. With very high signals the filter length and therefore the measurement time can be short. With very low signal levels the filter length and therefore the measurement time is increased in order to reduce noise. The used filter length is indicated in the field to the right, see Filter Length.

"User"

The filter length is set manually.

The filter length is entered in the entry window to the right. As the filter length works as a multiplier for the time window, this results in a constant measurement time.

Note: The time window varies depending on the used sensor. For most sensors it is fixed to 20 ms. For the R&S NRP-Z81 sensor it is 10 us. Therefore, the user filter length for the R&S NRP-Z81 has be about 1000 times larger than the filter length for other sensors in order to achieve the same filtering result.

The Auto Once button can be used to search for the optimum filter length for the current measurement conditions. The found filter length is indicated in the field to the right, see Filter Length.

"Fixed Noise"

The averaging factor is selected so that the sensors intrinsic noise (2 standard deviations) does not exceed the specified noise content. The desired noise content is entered in the entry field to the right, see Noise Content.

To avoid very long settling times when the power is low, the averaging factor can be limited with the Timeout parameter.

Remote command:

```
:SENSe<ch>[:POWer]:FILTer:TYPE on page 402
```

Filter Length ← Filter

Indicates the used filter length for filter type "Auto" or "User".

Remote command:

```
:SENSe<ch>[:POWer]:FILTer:LENGth:AUTO? on page 400
:SENSe<ch>[:POWer]:FILTer:LENGth[:USER] on page 401
```

Noise Content ← Filter

Sets the noise content for filter type "Fixed Noise".

RF Level

Remote command:

```
:SENSe<ch>[:POWer]:FILTer:NSRatio on page 401
```

Timeout ← Filter

Sets a time limit for the averaging process.

Remote command:

```
:SENSe<ch>[:POWer]:FILTer:NSRatio:MTIMe on page 402
```

Auto Once ← Filter

Calculates the optimum filter length for the current measurement conditions and indicates the value in the Filter Length.

Remote command:

```
:SENSe<ch>[:POWer]:FILTer:SONCe on page 402
```

Use Default Aperture Time

Enables you to specify a user-defined aperture time for the respective sensor.

The sensor default setting is usually sufficient. If however, the readings vary, it is recommended that you adjust the aperture time exactly to one modulation period, in order to obtain stable readings. To specify the aperture time, see Aperture Time.

Remote command:

```
:SENSe<ch>[:POWer]:APERture:DEFault:STATe on page 399
```

Aperture Time

Defines the acquisition time for the respective sensor, provided the entry field is enabled, see Use Default Aperture Time.

For example you can adjust the aperture time exactly to one signal period, in order to obtain a sufficient low average value.

Remote command:

```
:SENSe<ch>[:POWer]:APERture:TIMe on page 399
```

Use SParameter - Power Sensors

Activates the use of the S-Parameter correction data of the connected power sensor. For sensors with attenuator this checkbox is automatically checked.

Refer to the manual of the connected R&S NRP-Zxx power sensor for a description on how to use the SParameter table.

Remote command:

```
:SENSe<ch>[:POWer]:CORRection:SPDevice:STATe on page 399
```

Enable Logging

Activates recording of R&S NRP-Z power sensor readings.

If enabled, every value measured by a connected power sensor and indicated in the user interface, is written to a log file. Per measurement the function logs the measured value (2 readings when you work with peak sensors), the sensor type and the measurement time (time stamp).

RF Level

The function automatically creates the file name <code>SensLog<n>.txt</code> and stores the file in *txt format under /var/user/SensorLogging on the hard disk. You can enable logging for each connected sensor separately. If enabled, one file per sensor is written.

Note: This specific function is intended for measurements with long time intervals, or if there is a risk that the connection to the sensor can be interrupted and you need the data for reconstruction.

The simplified recording function continuously writes the values in the file of the corresponding sensor number, like SenslLog.txt. When you start a new measurement, the existing data will not be overwritten, but added to the file.

If you use this function, it is recommended that you regularly remove the files from the hard disk, since they require storage capacity.

Remote command:

:SENSe<ch>[:POWer]:LOGGing:STATe on page 403

5.4.6.2 NRP-Z Level Control

With the NRP-Z Level Control function, you can achieve a very stable and accurate RF power supplied to your DUT. With the aid of a downstream control circuit, a CLPC (Closed Loop Power Control), you can detect frequency response characteristics of the used components, such as losses due to cables, modules or components like power amplifiers, and compensate these effects accordingly.

Example: How to set up a closed loop power control

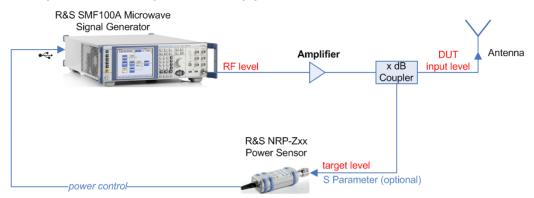


Figure 5-4: Example of a test setup with NRP-Z Level Control

As shown in the example, the sensor measures a proportional power in defined time intervals, derivated from a coupler. It considers optionally given S-parameters and returns the results to the generator. The signal generator compares the measured level with the set value and adjusts its output level accordingly.

This allows you to control the external signal level continuously and reliably reach a constant input level at the DUT in real time.

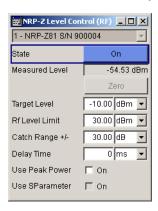
RF Level

Impact of the NRP-Z Level Control and the Operating Modes

Since the frequency and level of the RF output signal are continuously adjusted during "NRP-Z Level Control", this operating mode interferes those with varying frequency and level values.

The reason is, that the generator regularly transmits the output frequency to the connected R&S NRP-Zxx power sensor, which in turn requests the signal generator to adjust the output level according to its measurement. In contrast to this real time control loop, for example the list operating mode already generates the RF output signal on previously optimized frequency and level value pairs. In this case, the "NRP-Z Level Control" as a second control loop would impact the already determined RF signal values and also considerably slow down the measurement. Similar impacts occur in sweep mode, and also the "NRP-Z Power Viewer" and "NRP-Z Level Control" affect each other's functionality.

Hence, the operating modes exclude each other as follows:


- "NRP-Z Level Control" automatically disables NRP-Z Power Viewer and NRP-Z Power Analysis, and vice versa.
- Activating the RF frequency sweep, RF level sweep or the list mode instantly deactivates a running "NRP-Z Level Control".
- A running list or RF sweep mode blocks "NRP-Z Level Control". It can not be activated.

Also keep in mind that modulated signals may differ from CW signals regarding mean power and peak power. This affects the operation of "NRP-Z Level Control".

NRP-Z Level Control Settings

▼RF ON
▼ALC ON
Level...
Level Sweep...
ALC...
NRP-Z Power Viewer...
NRP-Z Power Control...
NRP-Z Power Analysis.
User Correction...

- ➤ To access the dialog for configuring the level control settings, perform one of the following:
 - Select "Level Control > config... > NRP-Z Level Control".
 - Press the MENU key and select "Level Control > NRP-Z Level Control".

The dialog contains all parameters for configuring the settings for level control test setup.

The remote commands required to define these settings are described in Chapter 7.13.15, "SOURce:POWer Subsystem", on page 526

RF Level

Sensor

Selects the R&S NRP-Z power sensor for power control.

Note: In remote control, the sensors are set up using the SENSe commands. The remote measurement is triggered by the READ query which also provides the measurement results.

The software version of the connected power sensor can be retrieved by means of the remote control command : SENS: POW: TYPE?.

Use the "Setup >" Chapter 5.2.3.5, "NRP-Z Info/Update", on page 110 dialog to update the sensor software.

Remote command:

```
[:SOURce<hw>]:POWer:SPC:SELect on page 535
```

State

Activates power control using the selected sensor.

The control loop periodically adjusts the generator output. After switching off, the running loop is completed.

Remote command:

```
[:SOURce<hw>]:POWer:SPC:STATe on page 535
```

Measured Level

Indicates the current reading of the sensor.

Zero - Power Sensors

Activates the auto zero function.

Zeroing calibrates the external power sensor by adjusting its reading at zero signal power. For this purpose, the RF power source must be switched off or disconnected from the sensor (see tips below). R&S power sensors automatically detect the presence of any significant input power. This aborts zeroing and generates an error message. Zeroing can take a few seconds, depending on the sensor model; refer to the documentation of your external power sensor for more information.

Tips for zeroing

Zeroing should be performed:

- During warm-up after switching on or connecting the instrument
- After a substantial change of the ambient temperature
- After fastening the power sensor module to an RF connector at high temperature
- After several hours of operation
- When very low-power signals are to be measured, e.g. less than 10 dB above the lower measurement limit.
- Switch off the RF power source for zeroing; do not disconnect it from the power sensor. In this way you will maintain the thermal equilibrium, and zeroing will also compensate for the noise superimposed on the measured signal (e.g. from a broadband amplifier).

Remote command:

```
:SENSe<ch>[:POWer]:ZERO on page 439
```

RF Level

Target Level

Specifies the nominal level expected at the input of the sensor. The signal generator adjusts the output power accordingly, in order to meet the target value at the sensor input, and thus the power required at the DUT.

Remote command:

[:SOURce<hw>]:POWer:SPC:TARGet on page 535

Limit - RF Level

Sets an upper limit for the RF output power.

You can use it to protect your DUT from damage due to high input power. If you enter an RF level above this value, the instrument limits the output power to this specified value, and generates a warning message.

However, the level indication in the status bar is not affected.

Note: The limit value is always effective, regardless of whether you work with "NRP-Z Power Control" or not.

The value is not affected by an instrument preset (PRESET key), *RST and the "Save/Recall" function. It is influenced only by the Factory Preset and the factory value is equal to maximum level.

Remote command:

```
[:SOURce<hw>]:POWer:LIMit[:AMPLitude] on page 531
```

Catch Range +/-

Sets the capture range of the control system.

Within the range:

Target Level +/- Catch Range

the power control locks and tries to achieve the target level. Readings outside the range are not considered.

Remote command:

```
[:SOURce<hw>]:POWer:SPC:CRANge on page 534
```

Delay Time

Defines a waiting period between the level adjustment of the generator and the next measurement of the power sensor.

With this parameter, you compensate any dead times in the controlled system.

Remote command:

```
[:SOURce<hw>]:POWer:SPC:DELay on page 534
```

Use Peak Power

Activates control by means of the peak power values, provided the power sensor supports this function. Otherwise, the dialog does not show this parameter.

Remote command:

```
[:SOURce<hw>]:POWer:SPC:PEAK on page 534
```

Use SParameter - Power Sensors

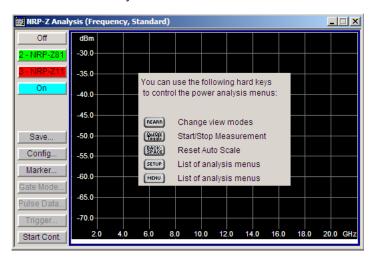
Activates the use of the S-Parameter correction data of the connected power sensor. For sensors with attenuator this checkbox is automatically checked.

RF Level

Refer to the manual of the connected R&S NRP-Zxx power sensor for a description on how to use the SParameter table.

Remote command:

:SENSe<ch>[:POWer]:CORRection:SPDevice:STATe on page 399


5.4.6.3 NRP-Z Power Analysis

The signal generator in combination with a connected R&S NRP probe allows sweep measurements on DUTs.

"NRP-Z Power Analysis" automatically disables NRP-Z Level Control and NRP-Z Power Viewer, and vice versa.

To open the "NRP-Z Analysis" dialog, select "Level Control > NRP-Z Power Analysis" or use the menu key under "Level Control".

The measurement data of the sensors is displayed in traces in a measurement diagram. Four traces are available. The traces are automatically or manually assigned to the sensors. In addition to the data traces, a reference trace can be stored and recalled and/or the trace indication can be frozen temporarily (hold trace), thus enabling comparison of traces. Readout and comparison of particular values of the traces is possible by means of four markers.

Three measurement modes are offered:

- power versus frequency (frequency response)
- power versus power (power sweep, AM/AM)
 These two modes are generator driven, that means, the generator provides the measurement signal.
- power versus time (power measurement in the time domain R&S NRP trace mode).

This mode is signal driven, that means besides the generator signal also external signals can be analyzed. Time mode requires an additional trigger event, for which level, hysteresis and dropout time are freely selectable. The generator also fea-

RF Level

tures pulse data analysis in this mode, provided that R&S power sensor NRP-Z81 is connected.

The timing can be used for normal and fast measurements in all modes.

By the use of a separate frequency than the set generator frequency, measurement results retrieved at a different frequency can be displayed in the diagram (for example as provided at the output of the DUT).

Special functions of some hardkeys

The instrument provides hardkeys with special functions for convenient operation, when the "NRP-Z Power Analysis" dialogs are active.

The REARR key toggles between different views of the diagram, selectable in the "REARR list NRP-Z Analysis dialog", see "REARR list - Power Analysis" on page 224:

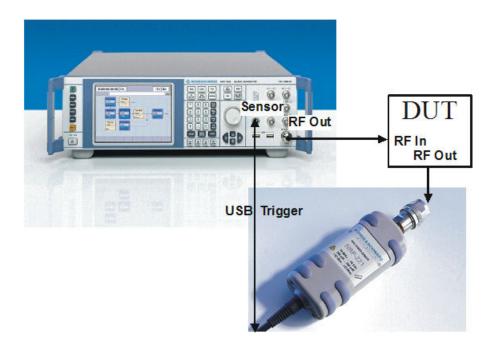
- standard, diagram and buttons are displayed,
- full display, diagram with marker list but no buttons are displayed,
- full display, diagram with pulse data list but no buttons are displayed, and
- full display only diagram is displayed.

The MENU and SETUP keys directly open a special power analysis menu. Either the complete menu tree or the setup menu tree is available in addition to the power analysis menu.

The instrument also provides this context-sensitive menu by pressing the right mouse button in the measurement diagram.

The ON /OFF key toggles between measurement start and stop.

The BACKSPACE key resets the scaling of the y-axis to suitable values after the use of auto scaling in the expanding mode. In this mode, the y scale might get too expanded due to temporary high power values. The reset function resets the diagram again, to also indicate smaller power values.


If "Auto Scale" is turned off, press the BACKSPACE button to switch to Auto Scale expanding mode, and to reset "Auto Scale".

Test Setup Example

As a power meter has no built-in selection, it is measuring all signal components from nearly DC to 40 GHz and higher. Therefore, the DUT's signal must be rather pure or subjected to external filtering (harmonics, spurious) before measured.

The test setup for the power analysis in the **power versus frequency or power versus power** is as follows:

RF Level

- 1. Connect the DUT (for example bandpass) to the RF output of the instrument and the RF input of the R&S NRP-Zxx sensor (like the R&S NRP-Z21).
- Connect the USB output of the R&S NRP-Zxx to the SENSOR connector of the instrument.
- 3. Open the "NRP-Z Analysis" diagram in the "Level Control" block of the generator
- 4. Setup the measurement and scale diagram in the "Configure..." dialog (for example fast measurement, 200 measurement points, range, x-axis and y-axis scale).
- Trigger measurement by pressing the "Start" button in the "NRP-Z Power Analysis" diagram.
- 6. If required, perform the further settings:
 - a) Set markers by means of the rotary knob. To access the markers activate the "NRP-Z Analysis Frequency / Marker" diagram view with the REARR key. The markers are moved by means of the cursor and the roll key to the desired trace position.
 - **Note:** The "NRP-Z Analysis Frequency / Marker" view is activated in the "REARR list NRP-Z Analysis" dialog (see "REARR list Power Analysis" on page 224). Press the REARR key repeatedly until you have this view.
 - b) Store a hardcopy of the measurement results "Configure Diagram" on page 222 ("Save..." submenu).
 - c) Apply user correction. "Ucor" is also available for NRP-Z measurements (see Chapter 5.4.7, "User Correction", on page 247).

The diagrams below show the result of the above settings, an RF frequency range of 1-6 GHz and the level range of -65 dB to 5 dB.

RF Level

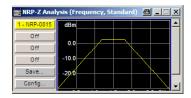


Figure 5-5: Standard view, diagram and buttons are displayed

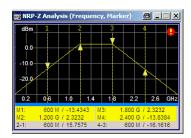


Figure 5-6: Full screen "Marker View", diagram with marker and marker list are displayed

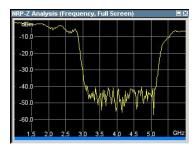


Figure 5-7: Fullscreen view, only the diagram is displayed

Measurement Diagram

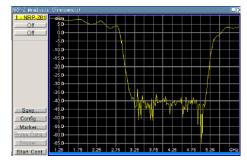
VRF ON

VALC ON

Level...

Level Sweep...

ALC...


NRP-Z Power Viewer...

NRP-Z Power Analysis...

User Correction

To open the "NRP-Z Power Analysis" diagram, select "Level Control > Configure > NRP-Z Power Analysis" or use the MENU key under "Level Control".

The dialog comprises the measurement diagram with start button and provides access to the dialogs for setting up the measurement and sensor parameters, for configuring the diagram and trace indication, and for storing hardcopies of the measurement results.

The R&S SMF supports various graph views, according to the methods of measurement and also additional functions such as the use of markers.

RF Level

Note: Activate the relevant diagram views in the "REARR list NRP-Z Analysis" dialog, see "REARR list - Power Analysis" on page 224, and switch to the currently needed view with the aid of the REARR key or STR+<A>.

Markers and the marker list are available in the "NRP-Z Analysis Frequency / Marker" view which is shown in the graph above (see also "Define Markers" on page 241). Select a marker with the roll key. One click activates the cursor, the second click captures the selected marker to move it to the desired position. Set the focus back to the diagram with a double click on ESC.

The list below the diagram displays the numerical readout of the marker values.

The x-axis of the measurement diagram is freely scalable in the frequency or power range of the generator, the power range for the y-axis is +100 dBm to -200 dBm. In power versus frequency mode, the frequency range of the x-axis is separately scalable. The available time range for power versus time measurements is -1s to +2s.

It is possible to select single or continuous measurement mode in the "Config..." menu. Single starts a single measurement after the trigger, continuous causes a restart of the measurement after each pass. The measurement is triggered by pushing the "Start" button. In continuous mode, the "Start" button is replaced by a "Stop" button after the trigger which can be used to cancel the measurement. A progress bar indicates the current status of the measurement.

In time mode additional triggering is required which is configured in the trigger dialog.

Changing to trace source Hold freezes the current trace indication in the diagram.

Some front panel keys are assigned special functions if the power analysis is active (see overview of features and operation in section Chapter 5.4.6.3, "NRP-Z Power Analysis", on page 209):

Marker and Pulse Data Indication - Power Analysis

The marker and pulse data value indication below the measurement diagram is only available for certain views of the diagram. The REARR key or the key combination <STR+A> toggles between the different diagram views (see Chapter 5.4.6.3, "NRP-Z Power Analysis", on page 209). The marker indication in the measurement diagram is activated in the marker dialog, see "Define Markers" on page 241.

Tip: In remote-control mode, include the markers of the diagram, their values or the pulse data in the hardcopy file.

Remote command:

```
:TRACe[:POWer]:SWEep:MEASurement:MARKer:DISPlay:ANNotation[:STATe] on page 444
:TRACe[:POWer]:SWEep:MEASurement:PULSe:DISPlay:ANNotation[:STATe] on page 445
```

Buttons

RF Level

The dialog comprises at the left side a button bar with the four **trace** buttons for sensor assignment.

The "Save" button enables you to store the measured data. The "Config" button opens the corresponding settings dialogs for configuring the measurement parameters, as well as the buttons "Marker", "Gate Mode", "Pulse Data" and "Trigger".

To perform a measurement, use the "Start/Stop" button at the bottom.

Trace Buttons - Power Analysis

The four buttons in the upper left corner of the measurement diagram indicate the sensor assignment to the respective trace. They open the settings dialogs for the traces, see"Setup Trace" on page 215.

Save... - Power Analysis

Opens the dialog to store a screenshot of the current measurement diagram, see "Save Hardcopy" on page 242.

Config... - Power Analysis

Provides access to the "Configure NRP-Z Analysis" diaolg, see "Configure Measurement" on page 219.

Marker... - Power Analysis

Opens the dialog for configuring markers, see "Define Markers" on page 241.

Gate Mode... - Power Analysis

Opens the dialog for configuring the settings in gate mode, see "Configure Gate Mode" on page 226. This mode assumes that you are working in measurement mode Measurement Mode - Power Analysis "Time".

Pulse Data... - Power Analysis

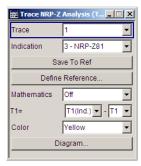
Opens the dialog for configuring the settings for pulse data analysis, see "Configure Pulse Data" on page 231. This mode assumes that you are working in the time domain analysis (Measurement Mode - Power Analysis "Time") and the sensor supports automatic pulse analysis.

Trigger... - Power Analysis

Opens the dialog for configuring the trigger settings, see "Configure Trigger" on page 239. This mode assumes that you are working in the time domain analysis (Measurement Mode - Power Analysis "Time").

Start - Power Analysis

Triggers the measurements with the R&S NRP-Z power sensors. The measurement results are indicated in the measurement diagram. A progress bar indicates the current status of the measurement.


RF Level

Remote command:

```
:SENSe[:POWer]:SWEep:INITiate on page 421
*OPC?
:TRACe<ch>[:POWer]:SWEep:DATA:POINts? on page 441
:TRACe<ch>[:POWer]:SWEep:DATA:XVALues? on page 442
:TRACe<ch>[:POWer]:SWEep:DATA:YVALues? on page 442
```

Setup Trace

The measurement data can be current (sensor trace) or stored trace data, either in a file (reference trace) or in a temporary memory (hold trace). Up to four traces can be indicated at one time. On connection, the sensors are automatically detected and assigned to a trace. By default, connected sensors are assigned to the traces in ascending order, that means sensor 1 to trace 1, sensor 2 to trace 2 and so on. If the default trace is already used, the sensor has to be assigned manually in the trace dialog.

With the **reference** and **hold** traces you can compare traces. Just assign a reference curve to one trace and your measured values to a second one, and switch on the display. This feature provides to directly compare results in the graph, or to show deviations in a graph by using the "Mathematics" function.

Example

The current single measurement of sensor 2 which is assigned to trace 2 shall be used as reference trace.

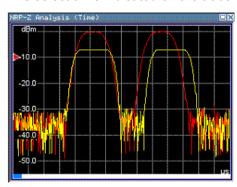
- 1. Select "Trace 2" with "Indication 2" = NRP-Zx and press the "Save To Ref" button.
- 2. Select "Trace 1" and "Indication Ref.".
- 3. Press the "Diagram" button, two identical traces are now indicated.
- 4. Push the "Start single" button and a new measurement cycle with sensor 2 is triggered. The resulting measurement trace can be compared to the former measurement which is visible as reference trace.

Trace

Selects the index of the trace. The source for the trace data is selected below. The trace color for each of the four possible traces is preset but can be changed.

RF Level

Remote command:


n.a.

In remote control, the trace is selected by the suffix of keyword TRACe.

Indication - Power Analysis

Selects the source for the trace data.

The selection is indicated on the trace button in the measurement diagram.

Red = reference or hold trace Yellow = current measurement trace

"Off"

No source is selected, the trace is not indicated.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:STATe on page 449
```

"2 - NRP-Zxx"

The current measurement results of the selected power sensor are the source for the trace data. The index at the beginning of the sensor name indicates the used connector, for example "2" indicates that the sensor is connected via a USB interface. The data is either continuously updated (continuous measurement) or represents a single measurement cycle (single measurement).

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:STATe on page 449
:TRACe<ch>[:POWer]:SWEep:FEED on page 442
```

"Ref"

Selects the reference trace. The reference trace is a static trace that was stored in a file and can be recalled.

It is possible to store one reference trace at a time.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:COPY on page 441
:TRACe<ch>[:POWer]:SWEep:FEED on page 442
:TRACe<ch>[:POWer]:SWEep:STATe on page 449
```

"Hold"

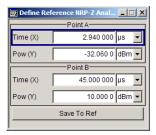
Freezes the current trace data. The hold trace is a temporary trace that is available until the NRP power analysis is finished. Freezing the trace of a sensor in one trace and displaying the measurement values of the same sensor in another trace allows fast comparison between measurements.

Remote command:

n.a.

RF Level

Save to Ref - Trace Power Analysis


Saves the selected trace as reference trace. One reference trace is available at a time.

Remote command:

:TRACe<ch>[:POWer]:SWEep:COPY on page 441

Define Reference - Trace Power Analysis

Opens a dialog for defining a linear reference curve.

To define the reference curve, enter the coordinates of "Point A" and "Point B".

The reference curve is determined by two value pairs in the cartesian coordinates of the "NRP-Z Analysis" diagram. Depending on the measurement mode, the following values are required:

Freq (X) / Pow (Y) in "Frequency" mode
 Determine the parameters of the frequency reference curve.

```
:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:XVALues on page 406
:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:YVALues on page 407
```

Pow (X) / Pow (Y) in "Power" mode

Enter the x- and y-axis values of the points A and B.

```
:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:XVALues on page 422
:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY on page 431
```

Time (X) / Pow (Y) in "Time" mode

Enter the time values for the x-axis and the corresponding y-axis power values. :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:XVALues on page 432 :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues on page 432

"Save To Ref"

Saves the selected trace as reference trace. One reference trace is available at a time.

```
:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:COPY on page 406
:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:YVALues on page 423
:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY on page 431
```

The reference curve consists of a certain number of coordinate points, calculated by the number of steps + 1. The first coordinate point starts at Min, and Max is the last. "Step", "Min" and "Max" are determined in the configuration dialog, see "Configure Measurement" on page 219.

Tip: You can assign the X and Y coordinates of the markers automatically in marker view. By pressing the "Fill Point" button, the function automatically reads the X and Y coordinates from the trace data and derives the intersection point of the selected marker and the trace curve.

RF Level

Mathematics - Trace Power Analysis

Activates the mathematic function.

The function enables you to determine the deviation of two test series, either of measurement traces, or also of traces that contain math results or stored reference curves. that means you can also assign a math result to an operand for further calculation. Various nested computation steps are possible.

The math operation follows the formula:

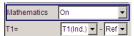
```
T<ch>result = T<ch>Operand1 - T<ch>Operand2
```

How to proceed:

Determine T<ch> Operand1 in the entry field next to "Tx", and then select T<ch> Operand2 in the second entry field right to it.

The result ("T<ch>_{result}") is assigned to the above selected "Trace". If switched on, the graph shows the resulting curve.

Note:


Depending on the type of trace, the instrument automatically sets the appropriate unit on the y-axis:

- "dBm" if it shows only measurement traces.
- "dB" for purely mathematical curves.
- "dB/dBm" ratio scale for mixed display, that means measurements and mathematical curves.

Example:

Example of a nested calculation.

 T1 shows the result of the subtraction of the trace ("Trace 1"), and the reference curve.

Trace2 subtracts Ref from T1.

That illustrates the nested calculation, since T1 covers already a math operation. **Note:** "(Ind.)" denotes the currently selected trace.

Remote command:

```
:CALCulate[:POWer]:SWEep:FREQuency:MATH<ch>:STATe on page 393
:CALCulate[:POWer]:SWEep:FREQuency:MATH<ch>:SUBTract on page 393
:CALCulate[:POWer]:SWEep:POWer:MATH<ch>:STATe on page 393
:CALCulate[:POWer]:SWEep:POWer:MATH<ch>:SUBTract on page 394
:CALCulate[:POWer]:SWEep:TIME:MATH<ch>:STATe on page 394
:CALCulate[:POWer]:SWEep:TIME:MATH<ch>:SUBTract on page 394
```

Color - Trace Power Analysis

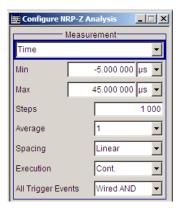
Selects the color of the trace.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:COLor on page 441
```

RF Level

Diagram.. - Power Analysis


Returns to the "NRP-Z Analysis Diagram".

Configure Measurement

The dialog contains the parameters required for configuring the measurement in the frequency, power or time domain.

In the lower section, you can access subdialogs, covering further setting parameters:

- "Configure Diagram" on page 222
- "Configure Gate Mode" on page 226
- "Configure Sensors" on page 228
- "Configure Pulse Data" on page 231
- "Configure Trigger" on page 239
- "Setup Trace" on page 215
- "Define Markers" on page 241
- ▶ To access the "Configure NRP-Z Analysis" dialog, select "Config...".

The measurement section provides the parameters for configuring the measurement either in frequency, power or time domain.

Measurement Mode - Power Analysis

Selects the measurement mode.

"Frequency" Power versus frequency measurement (frequency response).

"Power" Power versus power measurement (power sweep, AM/AM).

Power versus time measurement (envelope power measurement as a function of time, NRP trace mode). This is done by sampling power over a time interval and then assigning the internal power values that

have been determined to a number of points.

This mode also provides gated measurement and pulse data analysis, for example with a connected R&S NRP-Z81, and the corresponding graphical display "Gate View" and "Pulse Data View".

Remote command:

:SENSe[:POWer]:SWEep:MODE on page 422

"Time"

RF Level

Min - Power Analysis

Enters the minimum frequency/power/time of the measurement.

The available frequency/power range depends on the frequency/power range of the generator and the used power sensor.

The range for the start time is -1s to +1s. Value 0 defines the trigger point. By choosing a negative time value, the trace can be shifted in the diagram.

It is possible, that the measurement cannot be performed over the complete time range because of limitations due to sensor settings. In this case, an error message is output.

If this value is changed for a finished single measurement, only the scaling of the x-axis is changed. This allows to zoom the trace. However, for subsequent measurements the measurement range is changed according to the new setting.

If this value is changed during a continuous measurement, only the scaling of the x-axis is changed for measurement cycles that still were triggered before the change. For subsequent measurement cycles the measurement range is changed according to the new setting.

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:STARt on page 409
:SENSe[:POWer]:SWEep:POWer:STARt on page 427
:SENSe[:POWer]:SWEep:TIME:STARt on page 435
```

Max - Power Analysis

Enters the maximum frequency/power/time of the measurement.

The available frequency/power range depends on the frequency/power range of the instrument and the used power sensor.

The range for the stop time is 0 s to 2 s. Value 0 defines the trigger point.

It is possible, that the measurement cannot be performed over the complete time range because of limitations due to sensor settings. In this case, an error message is output.

If this value is changed for a finished single measurement, only the scaling of the x-axis is changed. This allows to zoom the trace. However, for subsequent measurements the measurement range is changed according to the new setting.

If this value is changed during a continuous measurement, only the scaling of the x-axis is changed for measurement cycles that still were triggered before the change. For subsequent measurement cycles the measurement range is changed according to the new setting.

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:STOP on page 410
:SENSe[:POWer]:SWEep:POWer:STOP on page 428
:SENSe[:POWer]:SWEep:TIME:STOP on page 436
```

Steps - Power Analysis

Enters the number of steps for the sweep. The number of measured points is steps + 1. The number of steps is one of the parameters that define the measurement speed. The higher the number of step, the longer the measurement takes (frequency and power mode).

RF Level

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:STEPs on page 410
:SENSe[:POWer]:SWEep:POWer:STEPs on page 428
:SENSe[:POWer]:SWEep:TIME:STEPs on page 436
```

Timing - Power Analysis

Frequency and power mode only.

Selects the timing mode of the measurement in frequency and power mode. This parameter is not available in time mode.

"Fast" Fast measurement with an integration time of 2 ms for each measure-

ment step.

"Normal" A longer but more precise measurement (integration time is 20 ms/

step).

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:TIMing[:MODE] on page 410
:SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] on page 428
```

Average - Power Analysis

Time mode only

Selects the averaging factor in time mode. This parameter is not available in frequency and power mode.

The factor determines how many measurement cycles are used to form a measurement result. Higher averaging counts reduce noise but increase the measurement time. Averaging requires a stable trigger event so that the measurement cycles have the same timing. If factor 1 is selected no averaging is performed.

Remote command:

```
:SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] on page 431
```

Spacing - Power Analysis

Sets the mode for calculating the sweep steps.

In power versus frequency mode, selection between linear and logarithmic spacing is possible.

"Linear"

- Power versus frequency
 - In a linear sweep, the frequency is swept in equidistant steps over the continuous frequency range. The x-axis is a linear frequency axis.
- Power versus power

The sweeps are performed at constant frequency but with variable generator power that is swept in linear, equidistant steps over a continuous range. The x-axis is a dB-linear power axis.

Power versus time

The sweeps are performed at constant frequency and stimulus power. The measurement is repeated over a specified period of time at constant time intervals.

RF Level

"Logarithmic" Power versus frequency

In a logarithmic sweep, the frequency is swept in equidistant steps on a logarithmic scale. The x-axis is a logarithmic frequency axis.

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:SPACing[:MODE] on page 409
:SENSe[:POWer]:SWEep:POWer:SPACing[:MODE] on page 427
:SENSe[:POWer]:SWEep:TIME:SPACing[:MODE] on page 435
```

Execution - Power Analysis

Selects single or continuous mode in power analysis.

The measurement is started in the diagram using the "Start" button. During measurement, the "Start" button is replaced by a "Stop" button which can be used to abort the measurement. The progress bar indicates the current status of the measurement.

Note: For time mode an additional trigger is required (see "Configure Trigger" on page 239).

"Single" Selects single measurement.

"Cont." Selects continuous measurements.

Remote command:

```
:SENSe[:POWer]:SWEep:RMODe on page 430
:SENSe[:POWer]:SWEep:FREQuency:RMODe on page 407
:SENSe[:POWer]:SWEep:POWer:RMODe on page 423
:SENSe[:POWer]:SWEep:TIME:RMODe on page 431
```

All Trigger Events - Power Analysis

"All Trigger Events" determines, whether the measurement data processing starts with a trigger event in one of the sensors (Logical OR), or whether all channels have to be triggered (logical AND). Each sensor evaluates a trigger event according to its setting independently.

This function supports the internal or external trigger modes with multi-channel time measurements.

"Wired AND" When all channels are triggered, the measurement starts.


"Wired OR" The measurement starts when a trigger event occurs.

Remote command:

```
:SENSe[:POWer]:SWEep:TIME:TEVents on page 436
```

Configure Diagram

The "Configure NRP-Z Analysis" dialog is divided into several sections. The diagram area covers the parameters for scaling the y-axis and the appearance of the diagram.

RF Level

Min - Max y-Axis - Power Analysis

Selects the minimum and maximum value of the y-axis.

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:YSCale:MAXimum on page 412
:SENSe[:POWer]:SWEep:FREQuency:YSCale:MINimum on page 412
:SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum on page 430
:SENSe[:POWer]:SWEep:POWer:YSCale:MINimum on page 430
:SENSe[:POWer]:SWEep:TIME:YSCale:MAXimum on page 438
:SENSe[:POWer]:SWEep:TIME:YSCale:MINimum on page 438
```

Auto Scale - Power Analysis

Activates/deactivates autoscaling of the y-axis of the diagram. The Auto Scale function adjusts the scale divisions so that the entire trace fits into the diagram area.

"Off"

Auto scale is deactivated. Switching from activated to deactivated, the scaling is maintained.

"Exp. (Course/Fine)"

Auto scale is activated. Automatically selects the appropriate scaling of the y-axis so that the trace is always visible. The range is expanded when a value is out of the right or the left end-of-scale value. The step width is 5 dB for selection "Exp. (Coarse)" and variable in the range of 0.2 db to 5 dB for selection "Exp. (Fine)".

"Flt. (Coarse/Fine)"

Auto scale is activated, that means this parameter automatically selects the appropriate scaling of the y-axis so that the trace is always visible. The range is either expanded, when a value is out of the right/left end-of-scale value or it is reduced when the trace fits into a smaller scale area. The step width is 5 dB for selection "Flt. (Coarse)" and variable in the range of 0.2 db to 5 dB for selection "Flt. (Fine)".

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO on page 411
:SENSe[:POWer]:SWEep:POWer:YSCale:AUTO on page 429
:SENSe[:POWer]:SWEep:TIME:YSCale:AUTO on page 437
```

Reset Auto Scale - Power Analysis

Resets the scaling of the y-axis to suitable values after the use of auto scaling in the expanding mode. For this mode, the Y scale might get too expanded because of temporarily high power values. The reset function resets the diagram again, to also indicate smaller power values.

Remote command:

```
:SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO:RESet on page 412
:SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet on page 429
:SENSe[:POWer]:SWEep:TIME:YSCale:AUTO:RESet on page 437
```

Grid - Power Analysis

Activates/deactivates the indication of a grid in the diagram area.

RF Level

Remote command:

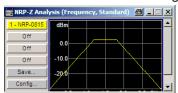
:DISPlay[:WINDow][:POWer]:SWEep:GRID:STATe on page 395

Bg Color - Power Analysis

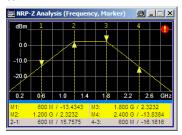
Selects the background color of the diagram, black or white. The background color is also effective for the hardcopy of the diagram.

Remote command:

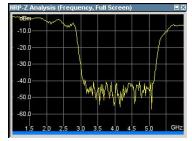
:DISPlay[:WINDow][:POWer]:SWEep:BACKground:COLor on page 395


REARR list - Power Analysis

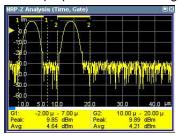
The "REARR list..." button in the middle section opens the dialog for selection of diagram views. This function provides to activate only the required "Views" on the checkboxes to the right. REARR or STRG+<A> switches between all views that are activated in this dialog.



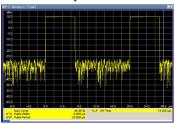
Viewing modes of frequency power and level sweep timing measurements:


• "Standard View:" shows the graph and the button bar at the left

 "Marker View:" shows the graph and the corresponding marker values at the bottom


"Full Screen:" shows the graph in fullscreen, and fades out buttons and list values

RF Level


Viewing modes of time trace and pulse data measurements:

"Gate View:" shows the graph with the corresponding gate data
 Gate view provides indicating time trace measurements, as for example the peak envelope power of the RF signal.

Note: This view is selectable in time mode, since gate measurement is a function of time.

"Pulse Data View:" shows the graph and the corresponding pulse data Pulse data view indicates pulse data measurement results of the R&S NRP-Z8x sensor family.

Note: This view is selectable in time mode, since pulse data measurement is a function of time.

Note: The toggle function always switches sequentially between the activated views. When you disable a view that is currently shown, the instrument automatically switches to the next active view.

At least one view must be active, that means the final active view cannot be switched off.

Remote command:

```
:TRACe[:POWer]:SWEep:MEASurement:STANdard:DISPlay:ANNotation[:
STATe] on page 446
:TRACe[:POWer]:SWEep:MEASurement:MARKer:DISPlay:ANNotation[:
STATe] on page 444
:TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[:STATe]
on page 443
:TRACe[:POWer]:SWEep:MEASurement:PULSe:DISPlay:ANNotation[:
STATe] on page 445
:TRACe[:POWer]:SWEep:MEASurement:FULLscreen:DISPlay:ANNotation[:
STATe] on page 443
```

Pressing the "Diagram..." button returns to the "NRP-Z Analysis" diagram.

Gate Mode... - Power Analysis

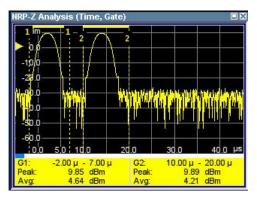
Opens the dialog for configuring the settings in gate mode, see "Configure Gate Mode" on page 226. This mode assumes that you are working in measurement mode Measurement Mode - Power Analysis "Time".

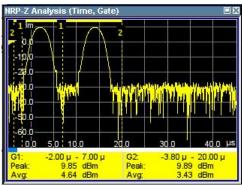
RF Level

Diagram.. - Power Analysis

Returns to the "NRP-Z Analysis Diagram".

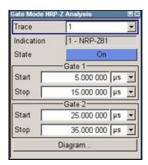
Configure Gate Mode


The "Configure NRP-Z Analysis" dialog is divided into several sections. The "Gate Mode..." button in the middle section opens the dialog for time gate settings.



For time measurement mode only.

Almost all R&S NRP sensors also support time gated measurements of peak and average power (see the data sheet or operating manual of the respective sensor). Two user-configurable gates can be assigned to one of the traces. Both gates are active at the same time. The values are calculated from the trace data, the time resolution is determined by the resolution of the sensor. An external trigger signal or signal triggering is required for synchronization.


The following graph shows two measurement examples, one with separated gates, and another one with overlapping gates.

The start and stop time of the gates are indicated as gate markers, a bar between the start and stop marker shows the gate length. The indication state of the gate borders and measurement values is only available for certain diagram views which are switched with the "REARR" key. The "REARR list NRP-Z Analysis dialog" dialog provides a selection of views, between which is toggled (see "REARR list - Power Analysis" on page 224).

RF Level

In the remote control mode, commands for setting the indication state differ from the commands for reading the measurement values.

Command that defines the indication state for the diagram and for hardcopy:

```
:TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[: STATe] on page 443
```

Commands that query the measured values:

```
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:AVERage? on page 391 queries the measured average power.
```

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:MAXimum? on page 392 queries the measured peak power.

Trace - Gate

Selects the trace to which the gates are assigned. The sensor assignment to the respective trace is performed in the measurement diagram (trace buttons). The two gates are assigned to the same trace.

Remote command:

```
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:FEED on page 391
```

Indication

(time measurement mode only)

Indicates the type of R&S NRP power sensor assigned to the selected trace. This field is automatically updated if the sensor is connected or disconnected. Additionally, this sensor is indicated on the trace button in the measurement diagram.

Remote command:

n.a.

State - Gate

Enables time gated measurement. The measurement is started with the "Start" button in the main measurement diagram. Both gates are active at one time.

The gate borders and the measurement values (average and peak power) are indicated in/below the measurement diagram. The indication is only available for certain diagram views which are switched with the "Rearrange" key.

Remote command:

```
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STATe on page 392
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:AVERage? on page 391
```

RF Level

```
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:MAXimum? on page 392
:TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[:STATe]
on page 443
```

Start / Stop - Gate

Sets the start and the stop times for the respective gate.

Remote command:

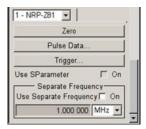

```
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STARt on page 392
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STOP on page 392
```

Diagram... - Power Analysis

Returns to the "NRP-Z Analysis" Diagram.

Configure Sensors

The "Configure NRP-Z Analysis" dialog is divided into several sections. The power sensor area additionally provides specific parameters for the power sensor. This part of the dialog might differ from the following description depending on the sensor used. Refer to the manual of the power sensor in this case.

The "Pulse Data..." button is displayed only for measurement mode time and if an R&S NRP-Z81 power sensor is connected.

Power Sensor - Power Analysis

Selects the power sensor to be set if more than one sensor is connected to the instrument.

Remote command:

n.a.

In remote control the sensor is selected via the numeric suffix in the sense key word of the command, for example SENSe2:POWer:SWEep:....

Zero - Power Analysis

Activates the auto zero function.

Zeroing calibrates the external power sensor by adjusting its reading at zero signal power. For this purpose, the RF power source must be switched off or disconnected from the sensor (see tips below). R&S power sensors automatically detect the presence of any significant input power. This aborts zeroing and generates an error message. Zeroing can take a few seconds, depending on the sensor model; refer to the documentation of your external power sensor for more information.

Tips for zeroing

RF Level

Zeroing should be performed:

- During warm-up after switching on or connecting the instrument
- After a substantial change of the ambient temperature
- After fastening the power sensor module to an RF connector at high temperature
- After several hours of operation
- When very low-power signals are to be measured, e.g. less than 10 dB above the lower measurement limit.
- Switch off the RF power source for zeroing; do not disconnect it from the power sensor. In this way you will maintain the thermal equilibrium, and zeroing will also compensate for the noise superimposed on the measured signal (e.g. from a broadband amplifier).

Remote command:

```
:SENSe<ch>[:POWer]:ZERO on page 439
```

Pulse Data... - Power Analysis

Opens the dialog for configuring the settings for pulse data analysis, see "Configure Pulse Data" on page 231. This mode assumes that you are working in the time domain analysis (Measurement Mode - Power Analysis "Time") and the sensor supports automatic pulse analysis.

Trigger... - Power Analysis

Opens the dialog for configuring the trigger settings, see "Configure Trigger" on page 239. This mode assumes that you are working in the time domain analysis (Measurement Mode - Power Analysis "Time").

Use S-Parameter - Power Analysis

Activates the use of the s-parameters correction data of the connected power sensor. For sensors with attenuator this checkbox is automatically checked.

Refer also to the manual of the connected R&S NRP power sensor for a description on how to use the s-parameters table.

Remote command:

```
:SENSe<ch>[:POWer]:CORRection:SPDevice:STATe on page 399
```

Level Offset State- Power Analysis

Activates a level offset at the sensor input. Enter the appropriate value in the entry field on the right, see Level Offset - Power Analysis.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet:STATe
on page 408
:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet:STATe on page 424
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet:STATe on page 425
```

Level Offset - Power Analysis

Enters the level offset at the sensor input. To take the value into account, activate the offset with "Level Offset State- Power Analysis" on page 229.

RF Level

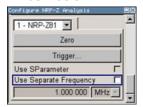
Remote command:

```
:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet on page 407
:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet on page 423
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet on page 425
```

Use Separate Frequency- Power Analysis

This setting is offered for measurements with DUTs that change the measurement frequency (like modulators), thus changing the input frequency of the sensor.

The dialog differs depending on the measurement modes:


Power versus frequency measurement

Activates the use of a different frequency range other than the set signal generator frequency range for the measurement. The separate minimum and maximum frequency values are entered below.

The x-scale of the diagram can be adjusted to the separate frequency range with functions "Use as X Scale" and "Map to X Scale".

Power versus power measurement / Power versus time measurement
 Activates the use of a different frequency other than the set signal generator frequency for the measurement. The separate frequency value is entered in the entry window below.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge[:STATe]
on page 408
:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency:STATe
on page 424
:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency on page 424
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency:STATe
on page 433
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency on page 432
```

Min Frequency - Power Analysis

Power versus frequency measurement active Use Separate Frequency only.

Enters the minimum frequency of the measurement.

RF Level

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STARt on page 408
```

Max Frequency - Power Analysis

Power versus frequency measurement active Use Separate Frequency only.

Enters the maximum frequency of the measurement.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STOP on page 409
```

Use as X Scale - Power Analysis

Measurement Mode Frequency only.

Activates the use of the separate frequency min and max values for the scaling of the x-axis. Thus, the trace for this sensor is visible in the diagram, especially for frequency ranges that differ substantially from the generator settings.

If more than one sensor is active and uses separate frequency, this options is only available for one sensor. To indicate the traces of the other sensors, function "Map to X Scale" has to be used.

Remote command:

n.a.

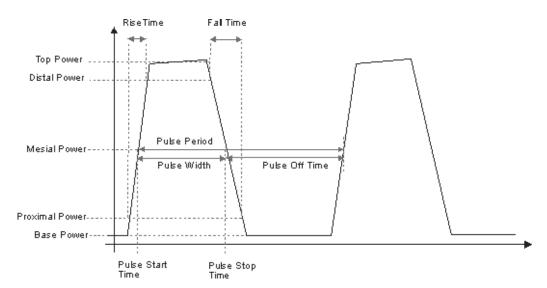
Map to X Scale - Power Analysis

Mode Frequency and active Use Separate Frequency only.

Maps the trace of a sensor that uses separate frequency to the current scaling of the diagram. Usually the scale is determined by the set frequency range of the generator. If more than one sensor is active and uses separate frequency the scale can also be determined by the separate frequency range of one of the other sensors.

Remote command:

n.a.


Configure Pulse Data

For R&S NRP-Z power sensors that support time domain analysis and automatic pulse analysis.

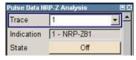
The power sensors enable pulse data analysis in measurement mode time. All important pulse parameters are measured after setting the threshold levels. The following graph shows most of these parameters:

RF Level

The sensor calculates the pulse parameters from each measurement and delivers the results to the R&S SMF.

The "Pulse Data" button opens the submenu to configure and enable pulse data analysis:

- The "Pulse Data NRP-Z- Analysis" dialog is divided into several sections. In the upper section the trace is selected and the pulse data analysis enabled. For information on traces and the measurement data on traces refer to "Setup Trace" on page 215.
- The "Thresholds" section covers the thresholds for detecting time values of a
 pulsed signal. Thresholds are used to calculate the time parameters. The thresholds can either be related to power or voltage. For information on parameters and
 terms refer to "Voltage / Power Related Pulse Data Analysis" on page 234,
 "Mesial Pulse Data Analysis" on page 234 and "Proximal Pulse Data Analysis"
 on page 235.
- The "Notifications" section covers Duty Cycle, Pulse Width, Pulse Period and Pulse Off Time (see "Notifications - Pulse Data Analysis" on page 235.
- The "Transition Times" section covers Rise Time, Pulse Start Time, Overshoot for the rising or falling edges, Fall Time and Pulse Stop Time (see "Transition Times -Pulse Data Analysis" on page 236).
- The "Signal Power" section covers Minimal Power, Peak Power and Average Power (see "Signal Power - Pulse Data Analysis" on page 237).
- The "Pulse Power" section covers Top Power and Base Power, and Mesial Proximal and Distal Power (see "Pulse Power Pulse Data Analysis" on page 238).


The indication state of the parameters also affects the hardcopy function. Storing the measurement diagram as hardcopy includes the parameters selected in this dialog. For information on storing measurement data refer to "Save Hardcopy" on page 242.

RF Level

A total of 6 parameters can be indicated at one time. Structured hierarchically, trace 1 features top priority and trace 4 is addressed with the lowest weighting. This means that only the first 6 checked parameters are indicated, starting with the settings of trace 1.

The pulse data is only visible for certain zoom levels of the diagram. The REARRANGE key or the key combination <STR+A> on an external keyboard toggles between the different zoom levels.

In the remote control mode, commands for setting the indication state differ from the commands for reading the values of the corresponding pulse data parameters.

In the description of the checkboxes, the different remote control commands are listed as shown in the example below:

Commands that define the indication state for the diagram and for hardcopy:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle:DISPlay:
ANNotation[:STATe] on page 446
activates indication of the measured duty cycle.
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP:DISPlay:
ANNotation[:STATe] on page 446
activates indication the measured top level.
```

• Commands that guery the measured values:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle? on page 444
queries the measured duty cycle.
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP?
on page 444
queries the measured top level.
```

Trace

Selects the index of the trace. The source for the trace data is selected below. The trace color for each of the four possible traces is preset but can be changed.

Remote command:

n.a.

In remote control, the trace is selected by the suffix of keyword TRACe.

Indication

(time measurement mode only)

RF Level

Indicates the type of R&S NRP power sensor assigned to the selected trace. This field is automatically updated if the sensor is connected or disconnected. Additionally, this sensor is indicated on the trace button in the measurement diagram.

Remote command:

n.a.

State - Pulse Data Analysis

Enables pulse data analysis. The measurement is started with the "Start" button in the main measurement diagram.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:STATe on page 425
```

Voltage / Power Related - Pulse Data Analysis

Selects how the threshold parameters are calculated, either voltage related or power related. The voltage-related parameters represent the normal case, as the usual representation when defining the pulse parameters (rise/fall time, pulse width) is U(t). To achieve a display with equivalent power-related values, the voltage-related threshold values must be converted (squared) (see example in table below).

	Distal	Mesial	Proximal
Voltage related:	90%	50%	10%
Power related:	81%	25%	1 %
log. Scale (for example):	-0.9dB	-6dB	-20dB
(approximately, difference between top- base power > 30 dB)			

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:BASE
on page 426
:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:BASE? on page 447
```

Distal - Pulse Data Analysis

Sets the upper reference level in terms of percentage of the overall pulse level (power or voltage related). The distal power defines the end of the rising edge and the start of the falling edge of the pulse.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:HREFerence on page 426
:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:POWer:HREFerence on page 447
```

Mesial - Pulse Data Analysis

Sets the medial reference level in terms of percentage of the overall pulse level (power or voltage related). This level is used to define the pulse width (τ) and pulse period.

RF Level

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:
REFerence on page 426
:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:POWer:REFerence
on page 448
```

Proximal - Pulse Data Analysis

Sets the lower reference level in terms of percentage of the overall pulse level (power or voltage related).

The proximal power defines the start of the rising edge and the end of the falling edge of the pulse.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:LREFerence on page 427
:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:POWer:LREFerence on page 448
```

Notifications - Pulse Data Analysis

Selects the pulse parameters to be indicated below the measurement diagram.

Note: The "Rearrange" key or the key combination <STR+A> toggle between the diagram views.

"Duty Cycle" Indicates the ratio between the pulse duration (τ) and the pulse period (T) of the measured pulse signal in per cent:

Duty Cycle = (pulse duration / pulse period) * 100

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle? on page 444
```

RF Level

"Pulse Width" Indicates the pulse duration of the pulse data measurement in seconds.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DURation:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DURation? on page 444
```

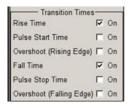
"Pulse Period" Indicates the time the pulse signal needs to complete one cycle.

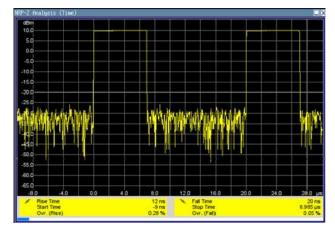
Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod? on page 444
```

"Pulse Off Determines the time the pulse signal is low, that means as long as the signal level is below the proximal value.

Remote command:


```
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation? on page 444
```


Transition Times - Pulse Data Analysis

Selects the transition parameters of the pulse signal to be indicated below the measurement diagram.

The R&S NRP-Z sensor searches for the first rising edge and the first falling edge in the trace.

Note: The "Rearrange" key or the key combination <STR+A> toggle between diagram views.

RF Level

"Rise Time / Fall Time"

Display the time the signal requires from crossing low reference until it reaches high reference level and vice versa.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
DURation:DISPlay:ANNotation[:STATe] on page 447
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
DURation? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
DURation:DISPlay:ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
DURation? on page 444
```

"Pulse Start Time / Pulse Stop Time"

Display the time when the pulse signal crosses the medial reference level.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
OCCurrence:DISPlay:ANNotation[:STATe] on page 447
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
OCCurrence? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
OCCurrence:DISPlay:ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
OCCurrence? on page 444
```

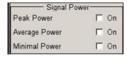
"Overshoot (Rising Edge / Falling Edge)"

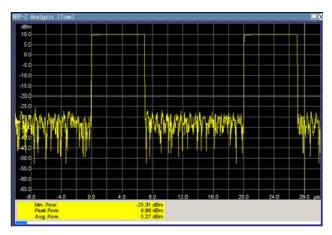
Display the maximum value of the pulse signal following a rising transition and the minimum value of the signal after a falling transition, respectively.

Overshoot values are given in per cent of the pulse amplitude as shown below:

- Overshoot(pos) = 100* (maximum top level) / (top level base level)
- Overshoot(neg) = 100* (base level minimum) / (top level base level)

Remote command:


```
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
OVERshoot:DISPlay:ANNotation[:STATe] on page 447
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:
OVERshoot? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
OVERshoot:DISPlay:ANNotation[:STATe] on page 447
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
OVERshoot? on page 444
```


Signal Power - Pulse Data Analysis

Selects the power parameters of the pulse signal to be indicated below the measurement diagram.

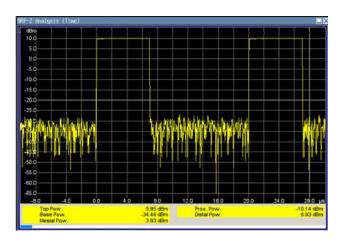
RF Level

Note: The REARRANGE key or the key combination <STR+A> toggle between the diagram views.

"Minimal / Peak / Average Power" display the minimum, the maximum and the average power of the pulse signal in dBm.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MINimum:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MINimum? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:AVERage:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:AVERage? on page 444
```


Pulse Power - Pulse Data Analysis

Selects which pulse power parameters are indicated in the diagram (pulse data view only)

Note: The "Rearrange" key or the key combination "<STR+a>" toggles between the diagram views.

RF Level

"Top / Base Power"

lindicate the pulse top and base level of the analyzed signal in dBm.

Remote command:

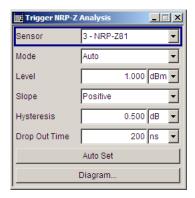
```
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE? on page 444
```

"Distal / Mesial / Proximal Power"

Display the absolute power values of the medial, low and high reference level in dBm.

Remote command:

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence? on page 444
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence:DISPlay:
ANNotation[:STATe] on page 446
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence? on page 444
```


Diagram.. - Power Analysis

Returns to the "NRP-Z Analysis Diagram".

Configure Trigger

The "Trigger..." button opens the "Trigger NRP-Z Analysis" dialog. The button is only active for time measurement mode. For this mode, the measurement start has to be known to the sensor as the measurement is controlled by the sensor.

RF Level

Power Sensor - Power Analysis

Selects the power sensor to be set if more than one sensor is connected to the instrument.

Remote command:

n.a.

In remote control the sensor is selected via the numeric suffix in the sense key word of the command, for example SENSe2:POWer:SWEep:....

Mode - Power Analysis

Selects if the measurement is free running, or starts only after an internal or external trigger event.

Remote command:

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SOURce on page 435

Level - Power Analysis

Sets the trigger threshold. This setting is also possible by means of the trigger marker on the left side of the diagram.

Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:LEVel on page 434
```

Slope - Power Analysis

Sets the polarity of the active slope of the trigger signals.

"Positive" The rising edge of a trigger signal is active.

"Negative" The falling edge of a trigger signal is active.

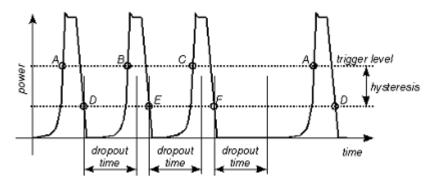
Remote command:

```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SLOPe on page 434
```

Hysteresis - Power Analysis

Sets the hysteresis of the internal trigger threshold. Hysteresis is the magnitude (in dB) the trigger signal level must drop below the trigger threshold (positive trigger slope) before triggering can occur again.

Remote command:


```
:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:HYSTeresis on page 434
```

RF Level

Drop out Time - Power Analysis

Determines the minimum time for which the signal must be below (above) the power level defined by "Level" and "Hysteresis" before triggering can occur again. This prevents the trigger system from being activated too early if the trigger threshold is briefly underranged or exceeded.

The dropout time parameter is useful when dealing with, for example, GSM signals with several active slots. When performing a measurement in sync with the signal, a trigger event is to be produced at A, but not at B or C. As the RF power between the slots is below the threshold defined by "Level" and "Hysteresis", the trigger hysteresis alone cannot prevent triggering at B or at C. This is why the dropout time parameter is selected to be greater than the time elapsed between points E and B and between F and C, but less than the time elapsed between G and A. This ensures that triggering will take place at A.

As the mechanism associated with the dropout time parameter is reactivated whenever the trigger threshold is crossed, unambiguous triggering can also be obtained for many complex signals. By contrast, all triggering is suppressed during the hold-off time. For the example described, this would mean that although stable triggering conditions could be obtained with a suitable hold-off time (regular triggering at the same point), it would not be possible to set exclusive triggering at A.

Remote command:

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:DTIMe on page 433

Auto Set - Power Analysis

Sets the trigger level, the hysteresis and the drop out time to default values.

Remote command:

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:AUTO on page 433

Diagram.. - Power Analysis

Returns to the "NRP-Z Analysis Diagram".

Define Markers

Readout and comparison of particular values of the traces is possible by means of four markers. The markers can be edited either in the diagram or in the "Marker" dialog that is called with the SETUP key in the "NRP-Z Analysis" diagram.

In the "Marker" dialog, the marker can be made visible ("Visible") and assigned to a certain trace ("Trace"). The exact position still has to be defined in the diagram.

RF Level

Markers and the marker list are available in the medium zoom level which is shown in the graph below. To access the markers activate the "NRP-Z Analysis (Time, Marker)" view with the "Rearrange" key. The markers are moved by means of the cursor and the roll key to the desired trace position. One click activates the marker cursor, the second click attaches the cursor to the selected marker which now can be moved to the desired position. Two clicks on the ESC key set the focus back to the diagram. The position of a active markers are indicated in the marker list.

Marker - Power Analysis

Selects the marker to be configured.

Remote command:

n.a.

Visible - Power Analysis

Selects if the marker and the marker list is visible in the diagram.

Remote command:

n.a.

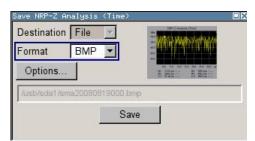
Trace - Power Analysis

Selects the trace to which the marker is assigned.

Remote command:

n.a.

Diagram.. - Power Analysis


Returns to the "NRP-Z Analysis" diagram.

Remote command:

n.a.

Save Hardcopy

The "Save ..." button in the "Power Analysis" diagram opens a dialog to store a screenshot of the current measurement diagram. The current screen shot is stored as indicated, that means with or without marker indication. The different diagram views are toggled with the "Rearrange" key or the key combination <STR+A> on an external keyboard (see overview of features and operation in Chapter 5.4.6.3, "NRP-Z Power Analysis", on page 209.

RF Level

Destination - Power Analysis

Indicates that the hardcopy is stored in a file.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice on page 414
```

Format - Power Analysis

Selects the file format.

Several bitmap graphic format are offered. In addition, format *.csv is available which stores the measurement values as ASCII data. The csv settings are performed in the "Options..." submenu.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage on page 414
```

File name - Power Analysis

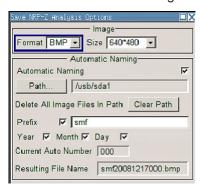
Indicates the file name.

The file name can be entered either manually via the file manager (button "File...") or generated automatically. Automatic naming is activated and configured in the "Options..." subdialog

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME] on page 417
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:STATe on page 421
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:FILE? on page 418
```

Save Hardcopy - Power Analysis


Stores the current measurement diagram as hardcopy in a graphic file format or the trace data in a csv-file, depending on the selected file format.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy[:EXECute] on page 416
```

Save Options - Power Analysis

Opens a submenu to enter the screenshot format and size and also to activate and select the automatic naming settings.

RF Level

"Format"

Selects the hardcopy format. In addition to several bitmap formats, format "*.csv" is available which stores the measurement values as ASCII data.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage on page 414
```

"Size"

Defines the size of the bitmap in terms of pixels. The first value of the size setting defines the width, the second value the height of the image.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice:SIZE on page 416
```

"Automatic Naming"

Selects that file names are created by rules if checked. The filename includes at least number and optionally additional information which is determined below.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:STATe on page 421
```

"Path"

Sets the directory the files are saved into. The "Clear Path" button deletes all image files with extensions "bmp", "img", "png", "xpm" and "csv" in the directory set for automatic naming.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory on page 417
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar
on page 417
```

"Prefix, Year, Month, Day"

"Prefix, Year, Month, Day" are included in the file name if checked and automatic naming is selected. The Auto Number used for file name creation and the resulting file name are indicated below.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe
on page 420
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix
on page 420
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe
on page 419
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY?
on page 418
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe
on page 419
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh?
on page 419
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe
on page 421
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR?
on page 420
```

RF Level

"Current Auto Number"

Automatic naming only

Indicates the number which is used in the automatically generated file name

Remote command:

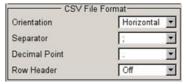
```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer? on page 419
```

"Resulting File Name"

Automatic naming only Indicates the automatically generated file name.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:FILE? on page 418
```


Remote command:

:SENSe[:POWer]:SWEep:HCOPy[:EXECute] on page 416

CSV Options Hardcopy- Power Analysis

If file format *.csv is selected, the trace data is saved as an ASCII file with separated values. Additional settings are available in the hardcopy options submenu.

CSV files can be imported into the program MS Excel and then processed further. Adjust the value separator and the decimal point according to the language version, to import the data correctly.

RF Level

"Orientation"

Defines the orientation of the X/Y value pairs:

• Horizontal:

X/Y values of trace 1 in rows 1 and 2, X/Y values of trace 2 in rows 3 and 4, X/Y values of trace 3 in rows 5 and 6, X/Y values of trace 4 in rows 7 and 8.

Example:

```
Trace1,X[Hz]: 10000.0; 10010.0; 10020.0; 10030.0; ...

Trace1,Y[dBm]: -20.09; -19.17; -18.19; -15.43; ...

Trace2,X[Hz]: 10000.0; 10010.0; 10020.0; 10030.0; ...

Trace2,Y[dBm]: -19.09; -18.17; -17.19; -14.43; ...

Trace3,X[Hz]: 10000.0; 10010.0; 10020.0; 10030.0; ...

Trace4,X[Hz]: 10000.0; 10010.0; 10020.0; 10030.0; ...

Trace4,X[Hz]: 10000.0; 10010.0; 10020.0; 10030.0; ...

Trace4,Y[dBm]: -22.07; -20.14; -21.56; -17.67; ...
```

Vertical:

X/Y values of trace 1 in column 1 and 2, X/Y values of trace 2 in column 3 and 4, X/Y values of trace 3 in column 5 and 6, X/Y values of trace 4 in column 7 and 8.

Example:

```
Trace1,X[Hz]; Trace1,Y[dBm]; Trace2,X[Hz]; Trace2,Y[dBm]; Trace3,X[Hz]; Trace3,Y[dBm]; Trace4,X[Hz]; Trace4,Y[dBm]; 10000.0;-20.09;10000.0; -19.09;10000.0;21.09;10000.0;22.07; 10010.0;-19.17;10010.0;-18.17;10010.0; -20.17;10010.0; -20.14; 10020.0;-18.19;10020.0;-17.19;10020.0;-19.19;10020.0;-21.56; 10030.0; -15.43;10030.0; -14.43;10030.0;-16.43;10030.0;-17,67;...
```

Remote command:

```
:SENSe[::POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:ORIentation on page 415
```

"Separator"

Defines which character should be used to separate the values, either tabulator, semicolon, comma or blank.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV[:COLumn]:
SEParator on page 415
```

"Decimal Point"

Defines which character should be used as the decimal point of the values, either dot or comma.

Remote command:

```
:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:DPOint on page 414
```

RF Level

"Row Header"

Defines whether each row (or column depending on the orientation) should be preceded by a header containing information about the trace, that means the index of the trace and the type of value (frequency or power or time).

Example:

Trace=2;Source=detecting..;X[Hz]";"Trace=2;Source=detecting..;Y[dBm]"

Remote command:

:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:HEADer on page 415

5.4.7 User Correction

The "User Correction" function is used to create and activate lists in which level correction values predefined by the user are freely assigned to RF frequencies. Correction is performed by the user-defined table values being added to the output level for the respective RF frequency.

With frequencies which are not contained in the list, the level correction is determined by interpolation of the closest correction values.

The lists are created in the "List Editor". Each list is stored in its own file with the predefined file extension \star . uco. The name of the User Correction file can be freely selected. The files are loaded from the "Lists..." file manager. Externally created tables with pairs of frequency and level values can be converted into User Correction files using the import function. The external files must have the file extension \star . txt or \star .csv. These file formats are provided e.g. by the Microsoft Excel program. The separators for table columns and for decimal floating-point numerals can be set. In addition, internally created User Correction data can be exported into ASCII files using the export function.

The amplitude can also be linearized automatically by means of an R&S NRP power sensor connected to one of the generator output signals. With the aid of the "Fill with Sensor" function, a table with correction values for external test assemblies can be automatically determined, e.g. for compensating the frequency response of cables. The User Correction list with the correction values acquired by the sensor is generated in the "Edit User Correction List" menu. The correction values can be acquired any time irrespective of the modulation settings of the generator.

If user correction is activated, the "UCOR" display (User Correction) is shown in the header together with the "Level" display. The RF output level is the sum of both values.

"Level" + "UCOR" = Output level

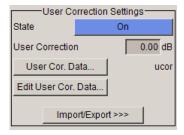
If the offset setting is used at the same time, the "Level" display value is the difference between the values entered for "Level" and "Offset" in the Level menu.

"Level" - "Offset" = Level display value

If activated, user correction is effective in all operating modes.

RF Level

5.4.7.1 User Correction Menu



To open the "User Correction" menu, select "Level Control > Configure > User Correction" or use the MENU key under "Level Control".

The combined menu "RF Level/EMF/ALC/UCOR" is divided into the several sections.

User Correction Settings

The "User Correction" settings are set in the most lower section of the combined dialog; this section is used to activate/deactivate user correction, and to create, select and activate the lists.

State - User Correction

Activates/deactivates user correction.

The "UCOR" status message appears in the frequency and level display.

Remote command:

[:SOURce<hw>]:CORRection[:STATe] on page 465

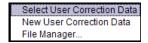
User Correction Value - User Correction

Indicates the current value for level correction.

Remote command:

```
[:SOURce<hw>]:CORRection:VALue? on page 465
[:SOURce<hw>]:CORRection:PMETer:TYPE on page 464
```

Measure - User Correction


Triggers the external measurement of the user correction of the level according to the user defined frequencies.

Remote command:

```
[:SOURce<hw>]:CORRection:MEASure on page 464
```

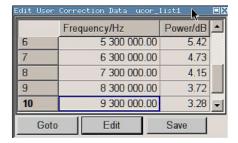
User Cor. Data - User Correction

Calls the "File Select" menu for selecting and creating a list or the "File Manager".

Remote command:

```
[:SOURce]:CORRection:CSET:CATalog? on page 458
[:SOURce<hw>]:CORRection:CSET[:SELect] on page 464
[:SOURce]:CORRection:CSET:DELete on page 460
```

RF Level


Edit User Cor. Data - User Correction

Calls the editor for editing the selected user correction list.

A list consists of any number of frequency/level value pairs. The currently selected list is displayed.

Each list is saved as a separate file with extension *.uco. The file name and the directory to which the file is saved are user-selectable.

Note: Save list only after filling both columns (frequency and level), otherwise the entries are lost.

"Frequency / Hz"

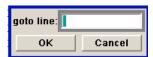
Enters the frequency to which the level correction value applies.

Note: The "Fill..." function allows to automatically enter any number

of frequencies with freely selectable range and increment.

Using the "Fill With Sensor" function of the "Edit" sub menu requires only the entry of the frequency values. The level values are automatically acquired by the compacted power sensor.

cally acquired by the connected power sensor.


"Power/dB"

Enters the level correction value to which the specified frequency applies. The values can be entered manually or automatically with the "Fill With Sensor" function (available in the "Edit" sub menu).

"Goto" Selects row for editing.

If Goto row is selected, a window opens for entering the requested row.

"Edit"

Calls a selection of possible actions described below.

"Insert Row"

Insert a new row before the marked row.

RF Level

"Insert Range" Insert new rows before the marked row. The number of rows to be inserted can be defined in an entry window.

"Fill...." Opens a sub menu for defining a set of list values to be automatically

entered in the ucor list (see Chapter 5.4.7.2, "Filling the Correction

List automatically", on page 252).

"Fill With Sensor" Calls the menu to activate the filling of the user correction list with level values acquired by the selected power sensor (see Chapter 5.4.7.3, "Filling the Correction List with Power Sensor Measurement Data", on page 253).

"Delete Row" Deletes the marked row.

"Delete Allows to delete any number of rows starting with the marked row.

Range..." The number of rows to be deleted can be defined in an entry window.

"Save as" Open the file menu to save the list under a new name.

Note: Save list only after filling both columns (frequency and level), otherwise the entries are lest

otherwise the entries are lost.

Each list is saved to the R&S SMFCompactFlash $^{\text{TM}}$ Card as a separate file with the file prefix *.uco. The file name and the directory to

which the file is saved are user-selectable.

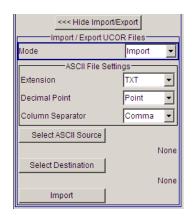
"Save" The list is saved under its current name.

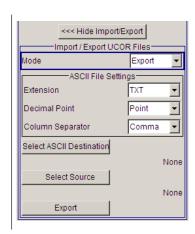
Remote command:

```
[:SOURce<hw>]:CORRection:CSET[:SELect] on page 464
[:SOURce<hw>]:CORRection:CSET:DATA:FREQuency on page 458
[:SOURce<hw>]:CORRection:CSET:DATA:POWer on page 459
```

Import/Export

User correction list can be imported from externally created files or exported into text or CSV-files. The import/export settings are available after clicking the "Import/Export" button.


Import/Export >>>


Expands the menu with the area for import and export of user correction files.

Externally edited Excel tables with any number of frequency/level value pairs can be imported as text or CSV-files and used for user correction.

Conversely, you can also export internally created user correction lists as text or CSV-files.

RF Level

Mode - User Correction

Selects if user correction lists should be imported or exported. The settings offered depend on the selected mode.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:MODE on page 463

Extension - User Correction

Selects the file extension of the ASCII file to be imported or exported. Selection "TXT" (text file) or "CSV" (Excel file) is available.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:AFILe:EXTension on page 461

Decimal Point - User Correction

Selects the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SEParator:DECimal
on page 462

Column Separator- User Correction

Selects the separator between the frequency and level column of the ASCII table the user correction list is exported to or imported from.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SEParator:COLumn
on page 461

Select ASCII Source / Destination - User Correction

Calls the "File Manager" for selecting the ASCII file to be imported into a user correction list (source) or the ASCII file the user correction list is exported (destination) in.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SELect on page 461

RF Level

Destination / Source - User Correction

Calls the "File Manager" for selecting the user correction list to be exported (source) into an ASCII file or the destination for the ASCII file to be imported (destination) in.

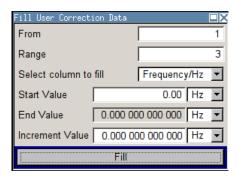
Remote command:

[:SOURce<hw>]:CORRection:DEXChange:SELect on page 463

Import / Export - User Correction

Starts the export or import of the selected file.

When import is selected, the ASCII file is imported as user correction list.


When export is selected, the user correction list is exported into the selected ASCII file.

Remote command:

[:SOURce<hw>]:CORRection:DEXChange:EXECute on page 462

5.4.7.2 Filling the Correction List automatically

The "Fill Table" menu enables you to automatically set the level correction values.

The start line and the number of rows to be filled are defined under "From" and "Range."

The column to be filled is selected under "Select column to fill". Depending on the selection here, the default for start, end, and increment value are set. As the settings are interdependent, a change of one parameter may result in the automatic change of one or more of the other parameters. The filling of the column with the selected value settings is started with button "Fill".

The correction list entries are only computed when the "Fill" button is pressed.

From

Sets the start value of the index range.

Remote command:

n.a.

Range

Sets the range for filling the table.

RF Level

Remote command:

n.a.

Select column to fill

Selects either the frequency or the level column to be filled with the value defined below.

Remote command:

n.a.

Start value

Sets the start value for the frequency or the level entries.

Remote command:

n.a.

End value

Displays the end value for the frequency or the level entries.

Remote command:

n.a.

Increment value

Sets the increment for the frequency or the level entries.

Remote command:

n.a.

Fill

Fills the selected column in the set range with values, starting with the start value and using the set increment.

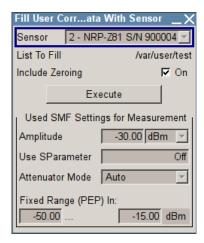
Remote command:

n.a.

5.4.7.3 Filling the Correction List with Power Sensor Measurement Data

The level correction values for the user correction list can be acquired by means of R&S NRP power sensors. The R&S NRP sensors are connected to either the SENSOR connector or to one of the USB interfaces. Configuration of the connection is performed in the "Power Sensor" menu (see Chapter 5.4.6.1, "NRP-Z Power Viewer", on page 198). The filling of the user correction list with measurement data is performed in the ucor list editor (see "Edit User Cor. Data - User Correction" on page 249).

In the editor, the frequencies for which the correction values are to be acquired are entered in the frequency column (either manually or by means of the "Fill..." menu).


Do not save the list at this point, because the frequency entries are lost as long as there are no entries for the level column also. In the following these entries are automatically acquired by the connected power sensor.

RF Level

All level correction values for the given frequency values are measured using the Power Sensor and automatically filled in the selected list after the "Execute" button is pressed. The list is automatically stored and recalled again after filling.

Fill User Correction Data with Sensor Settings

The "Fill with Sensor" button of the "Edit User Correction Data" menu opens the associated menu.

This dialog describes all parameters for filling a table automatically with sensor readings.

To select the sensor and determine its parameters, refer to Chapter 5.4.6.1, "NRP-Z Power Viewer", on page 198.

To fill the table, press the "Execute" button.

Fill User Correction Data with Sensor

Enables you to fill the table with correction data acquired by a connected power sensor from Rohde & Schwarz.

"Sensor" Displays connected sensors for selection.

"List To Fill" Indicates the used list file.

"Include Zeroing"

Performs a zeroing procedure before acquiring the user correction data to improve precision. Since during zeroing no signal may be applied to the sensor, RF is temporarily switched off at the generator. When unchecked, the zeroing procedure is skipped. The RF signal level might be blanked shortly. This setting is recommended if blanking of RF is undesirable or the absence of power at the sensor can not be guaranteed.

"Execute"

Performs automatic filling of the list, provided a sensor is detected and the user correction list contains at least one frequency value.

Modulation

Remote command:

```
[:SOURce<hw>]:CORRection:ZERoing:STATe on page 465
[:SOURce<hw>]:CORRection:CSET:DATA[:SENSor<ch>][:POWer]:SONCe
on page 459
```

Used SMF Settings for Measurement

Displays the settings relevant for the measurement.

"RF Source" Shows the path for which the correction menu settings are made.

"Modulation" Indicates the modulation state
"Amplitude" Shows the currently set level.

"Use SParameter"

Indicates whether SParameter correction is used.

"Attenuator Mode"

Displays the selected mode of the attenuator.

"Fixed Range (PEP) In:"

Shows the level range.

Remote command:

n.a.

5.5 Modulation

5.5.1 Overview of Modulation

Analog modulation is a method used to transmit information of an LF (Low Frequency) signal in accordance with a second signal, typically one of a higher frequency. This is done by varying one or more properties of a high frequency waveform, called the modulation or carrier signal, with the modulating signal that contains the information to be transmitted.

The three key parameters of the modulation signal are the amplitude, phase and frequency. These parameters are modified in accordance with the low frequency signal to obtain the modulated RF signal.

The R&S SMF provides all the various types of modulation, such as:

- AM (Amplitude Modulation, analog and digital)
- FM (Frequency Modulation, analog and digital)
- PhiM (Phase Modulation, analog and digital)
- PULM (Pulse Modulation)
- Chip Modulation

Modulation

The RF signal can be modulated with a wide variety of internally generated modulations waveforms, for example sine waves, triangle/rectangular/trapeze signals, and noise. Required options are:

- R&S SMF-B20 AM/FM/PhiM//LOG AM for performing amplitude, frequency, phase and digital modulation
 - This option also provides two LF generators and a noise generator for internal modulation.
- R&S SMF-K3 Narrow Pulse Modulation provides generation of narrow pulse signals
- R&S SMF-K23 Pulse Generator for pulse signals
 Chirp modulation requires option R&S SMF-B20 and R&S SMF-K23 and an interface board with part number 1400.0530.02.
- R&S SMF-K27 Pulse Train for generating pulse train signals

Settings for the modulation are made in separate modulation menus. These menus can be accessed in the block diagram by way of the "Modulation" function block, or by means of the menu with the same name which is opened using the MENU key.

5.5.1.1 Enabling/Disabling Analog Modulations using the MOD On/Off Key

The MOD ON/OFF key switches the modulations on and off.

MOD ON/OFF

Press the MOD ON/OFF key to enable/disable analog modulations.

Pressing the key again restores the status that was active before the last switch-off. "MOD OFF" is displayed in the info line of the header next to the "Level" field.

Remote command:

[:SOURce<hw>]:MODulation[:ALL][:STATe] on page 520

5.5.1.2 Modulation Sources

The following modulations use internal and external modulation sources:

- Amplitude modulation
- Pulse modulation
- Frequency modulation
- Phase modulation

Internal Modulation Sources

Two LF generators, a noise generator and a pulse generator are available as internal modulation sources for a fully equipped instrument.

The LF generators supply signals with selectable shapes (see Chapter 5.6.1, "LF Gen./ Noise", on page 276). The pulse generator provides single and double pulse modulation with selectable pulse widths and periods or a user-definable pulse train (see Chapter 5.6.3, "Pulse Generator", on page 297).

Modulation

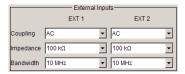
The noise generator supplies white noise with selectable bandwidth and level distribution.

The LF generators and the noise generator require option R&S SMF-B20. The pulse generator requires option R&S SMF-K23.

External Modulation Sources

The modulation inputs EXT 1, EXT 2, and PULSE IN at the front of the instrument are provided as the external modulation source for amplitude, frequency, phase, digital, and pulse modulation.

The external inputs EXT 1 and EXT 2 require option R&S SMF-B20.


The external modulation signal for AM, FM and PM at the input must have a voltage of $U_S = 1 \text{ V}$ ($U_{EFF} = 0.707 \text{ V}$) in order to achieve the displayed modulation depth and range. The input voltage should not exceed 1 V, otherwise modulation distortions might occur.

External Analog Modulation Sources

The external analog modulation inputs are configured in the dialogs of the selected modulation mode (amplitude modulation, frequency modulation, or phase modulation).

The following settings are valid for all analog modulation modes. Therefore, these settings are performed in all dialogs accordingly.

Coupling - External Inputs

Selects the coupling mode (AC or DC) for external feed via the EXT 1 and/or EXT 2 input.

Remote command:

[:SOURce<hw>]:INPut:MODext:COUPling<ch> on page 480

Impedance - External Inputs

Selects the impedance for external feed via the EXT 1 and/or EXT 2 input. Selection 50 Ohm, 600 Ohm, and 100 kOhm are available.

Remote command:

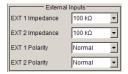
[:SOURce<hw>]:INPut:MODext:IMPedance<ch> on page 480

Bandwidth - External Inputs

Selects the bandwidth for the external feed via the EXT 1 and/or EXT 2 input. Selection 200 kHZ und 10 MHz are available.

Modulation

Remote command:


[:SOURce]:LFOutput<ch>:BANDwidth on page 483

External Digital Modulation Sources

The external digital modulation inputs are configured in the "Digital Modulation" dialog.

The settings are valid for all digital modulation modes (ASK, FSK, PSK).

EXT 1/2 Impedance - External Inputs

Selects the impedance for external feed via the EXT 1 and/or EXT 2 input. Selection 50 Ohm, 600 Ohm, and 100 kOhm are available.

Remote command:

[:SOURce<hw>]:INPut:MODext:IMPedance<ch> on page 480

Polarity - External Inputs

Sets the polarity of the external modulation signal.

"Normal" The RF level is **ON** while the level is **HIGH**.

"Inverse" The RF level is **ON** while the level is **LOW**.

Remote command:

[:SOURce<hw>]:DM:EXTernal:POLarity<ch> on page 467

Simultaneous Operation of Several Modulations or Other Operating Modes

The table shows the modulations and operating modes which can be activated simultaneously (+) or which deactivate each other (-).

	AM	ASK	FM	FSK	PhiM	PSK	PuM
Amplitude modulation (AM)	1	+	+	+	+	+	+
ASK	-	1	+	+	+	+	-
Frequency modulation (FM)	+	+	1	-	-	-	+
FSK	+	+	-	1	-	+	+
Phase modulation (PhiM)	+	+	-	-	1	-	+
PSK	+	+	-	-	-	1	+
Pulse modulation (PuM)	+	-	+	-	+	+	1

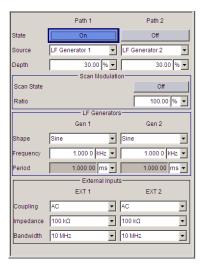
Modulation

5.5.2 Amplitude Modulation (AM)

An internal and/or external source can be selected for amplitude modulation. Two LF modulation generators and a noise generator are available as the internal source for a fully equipped instrument. Two-tone AM is possible by simultaneously switching on the external and internal or both internal sources.

Two external input connectors for external feed of analog modulation signals are located on the front panel of the instrument.

The AM modulation depth is limited by the maximum peak envelope power (PEP).


5.5.2.1 Amplitude Modulation Settings

To open the "Amplitude Modulation" dialog, select "Modulation > Configure > Amplitude Modulation" or use the MENU key under "Modulation".

For a fully equipped instrument two LF generators and a noise generator are available as internal sources.

In the upper section of the dialog, the amplitude modulation is activated and configured. Additionally, the scan state and the ratio can be set. In the "External Inputs" section, the external inputs are configured. These settings affect all modulations which use the same external modulation sources. For a detailed description, see "External Analog Modulation Sources" on page 257. The "LF Frequency" field displays the LF frequency as adjusted in the "LF Generator" dialog. This value can be also be changed.

State

Activates amplitude modulation.

Remote command:

[:SOURce<hw>]:AM<ch>:STATe on page 452

Source

Selects the modulation signal source for AM.

Modulation

"LF Generator 1/2"

Uses one of the internal LF generators as modulation signal source

for AM.

"Ext 1/2" Uses an externally applied modulation signal (EXT1, 2) for amplitude

modulation.

"Noise Gener- Uses the internally generated noise signal.

ator"

Remote command:

[:SOURce<hw>]:AM<ch>:SOURce on page 451

AM Depth

Sets the modulation depth in percent.

Note: This function is available when scanning state is off.

With two-tone modulation, observe that the set modulation depth applies to both signals and the sum modulation depth is determined by doubling the set modulation depth. This results in overmodulation if the maximal value for modulation depth is exceeded (see data sheet).

Remote command:

```
[:SOURce<hw>]:AM<ch>[:DEPTh] on page 450
```

AM Sensitivity

Sets the input sensitivity of the of the externally applied modulation signal at the EXT1, 2 input in db/V.

Note: This function is available when scanning state is on.

Remote command:

```
[:SOURce<hw>]:AM<ch>:SENSitivity on page 451
```

Scan State

Activates/deactivates the logarithmic amplitude modulation.

Remote command:

```
[:SOURce<hw>]:AM:SCAN:STATe on page 451
```

Ratio

Sets the path1/path 2 ratio.

Remote command:

```
[:SOURce<hw>]:AM:RATio on page 450
```

Shape

Selects the waveform shape of the LF signal.

Remote command:

```
[:SOURce<hw>]:LFOutput<ch>:SHAPe on page 501
```

Frequency – LF Generator

The frequency of the LF generator 1/2.

This setting affects all analog modulations which use the LF generator as the internal modulation source.

Modulation

It depends on the used shape:

• "Sine"

Sets the repetition frequency of the internal signal. In this case the signal period results from this value, indicated in Period.

"Pulse, Triangle or Trapezoid"
 Indicates the frequency resulting from the set signal Period.

Remote command:

[:SOURce]:LFOutput<ch>:FREQuency on page 483

Period (Sine Shape) - LF Generator

Indicates the period of the LF sine signal. It is determined by the repetition frequency of the internal signal, see Frequency.

Period (Pulse, Triangle, Trapezoid Shape) – LF Generator

Sets the period of the current LF signal. The period determines the repetition frequency of the internal signal, see Frequency.

Remote command:

```
[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod on page 502
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod on page 503
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:PERiod on page 504
```

5.5.3 Frequency Modulation (FM)

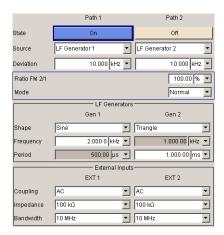
Frequency modulation requires option R&S SMF-B20 (AM/FM/PhiM/Log AM Modulator).

An internal and/or external source can be selected for frequency modulation. Two LF modulation generators and a noise generator are available as internal sources for a fully equipped instrument. Two-tone FM is possible by simultaneously switching on the external and internal source.

Two external input connectors for external feed of analog modulation signals are located on the front panel of the instrument.

It is not possible to use analog frequency modulation simultaneously with digital frequency modulation or with analog or digital phase modulation.

See "Simultaneous Operation of Several Modulations or Other Operating Modes" on page 258 for an overview in detail.


5.5.3.1 Frequency Modulation Settings

To access the "Frequency Modulation" dialog, select "Modulation > Configure > Frequency Modulation" or use the MENU key under "Modulation".

Modulation

For a fully equipped instrument two LF generators and a noise generator are available as internal sources.

In the upper section of the menu, the frequency modulation is activated and configured. Then, the frequency ratio FM path2/path1 and the modulation mode are selected. The "LF Generators" section sets the parameters of the LF generators 1/2. These settings affect all analog modulations which use the LF generator as the internal modulation source.

In the "External Inputs" section, the external inputs are configured. These settings affect all modulations which use the same external modulation sources. For a detailed description, see section "External Analog Modulation Sources" on page 257.

State

Activates frequency modulation.

Activation of FM deactivates phase modulation.

Remote command:

[:SOURce<hw>]:FM<ch>:STATe on page 472

Source

Selects the modulation signal source for FM.

"LF Generator 1/2"

Uses one of the internal LF generators as modulation signal source for AM

"EXT 1/2"

Uses an externally applied modulation signal (EXT1, 2) for frequency modulation.

"Noise Generator"

Uses the internally generated noise signal.

Remote command:

[:SOURce<hw>]:FM<ch>:SOURce on page 471

FM Deviation

Sets the modulation deviation in Hz.

Modulation

The maximum deviation depends on the RF frequency set and the selected modulation mode (see data sheet). It is possible to enter a deviation that is too high for a certain RF frequency or to vary the RF frequency to a range in which the deviation can no longer be set. In this case the maximum possible deviation is set and an error message is displayed.

The deviation of the internal source must not exceed the deviation of the external source.

Remote command:

```
[:SOURce<hw>]:FM<ch>[:DEViation] on page 470
```

Ratio FM 2/1

Sets the deviation of path 1 ratio.

For example, if the ratio is set to 50%, the deviation of path 2 will become 5 kHz if the deviation of path 1 is set to 10 kHz.

Remote command:

```
[:SOURce<hw>]:FM:RATio on page 471
```

Mode (Frequency Modulation)

Selects the mode for the frequency modulation.

"Normal" The maximum range for modulation bandwidth and FM deviation is

available.

"Low Noise" Frequency modulation with phase noise and spurious characteristics

close to CW mode. The range for modulation bandwidth and FM devi-

ation is reduced (see data sheet).

Remote command:

```
[:SOURce<hw>]:FM:MODE on page 471
```

Shape

Selects the waveform shape of the LF signal.

Remote command:

```
[:SOURce<hw>]:LFOutput<ch>:SHAPe on page 501
```

Frequency – LF Generator

The frequency of the LF generator 1/2.

This setting affects all analog modulations which use the LF generator as the internal modulation source.

It depends on the used shape:

• "Sine"

Sets the repetition frequency of the internal signal. In this case the signal period results from this value, indicated in Period.

"Pulse, Triangle or Trapezoid"
 Indicates the frequency resulting from the set signal Period.

Remote command:

```
[:SOURce]:LFOutput<ch>:FREQuency on page 483
```

Modulation

Period (Sine Shape) – LF Generator

Indicates the period of the LF sine signal. It is determined by the repetition frequency of the internal signal, see Frequency.

Period (Pulse, Triangle, Trapezoid Shape) - LF Generator

Sets the period of the current LF signal. The period determines the repetition frequency of the internal signal, see Frequency.

Remote command:

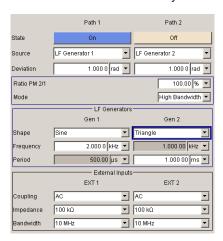
```
[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod on page 502
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod on page 503
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:PERiod on page 504
```

5.5.4 Phase Modulation (PhiM)

Frequency modulation requires option R&S SMF-B20 (AM/FM/φM/Log AM Modulator).

It is not possible to use analog phase modulation simultaneously with digital phase modulation or with analog or digital frequency modulation.

See "Simultaneous Operation of Several Modulations or Other Operating Modes" on page 258 for an overview in detail.


An internal and/or external source can be selected for phase modulation. Two LF modulation generators and a noise source are available as internal sources in a fully equipped instrument.

Two-tone ϕM is possible by simultaneously switching on the external and internal or both internal sources. Two external input connectors for external feed of analog modulation signals are located on the front panel of the instrument.

5.5.4.1 Phase Modulation Dialog

To open the "Phase Modulation" dialog, select "Modulation > Configure > Phase Modulation" or use the MENU key under "Modulation".

Modulation

For a fully equipped instrument two LF generators and a noise generator are available as internal sources.

In the upper section of the menu, the phase modulation is activated and configured. Then, the phase modulation ratio and the modulation mode are selected. The "LF Generators" section covers the frequency fields of the two LF generators (1/2). This setting affects all analog modulations which use the LF generator as the internal modulation source.

In the "External Inputs" section, the external inputs are configured. These settings affect all modulations which use the same external modulation sources. For a detailed description, see section "External Analog Modulation Sources" on page 257.

State

Activates \$\phi M\$ modulation.

Activation of φM deactivates frequency modulation.

Remote command:

```
[:SOURce<hw>]:PM<ch>:STATe on page 526
```

Source

Selects the source for the phase modulation signal.

"LF Generator 1/2"

Uses one of the internal LF generators (1 or 2) as modulation signal source for phase modulation.

"EXT 1/2"

Uses an the externally applied modulation signal (EXT1, 2 for phase modulation.

"Noise Generator"

Uses the internally generated noise signal.

Remote command:

```
[:SOURce<hw>]:PM<ch>:SOURce on page 526
```

Ratio PM 2/1

Sets the deviation ratio of PM2 to PM11.

For example, if you set 50% ratio, and the deviation in modulation channel 1 is 10 kHz, the deviation in channel 2 results in 5 kHz.

Remote command:

```
[:SOURce<hw>]:PM:RATio on page 525
```

фM Mode

Selects the mode for the phase modulation.

"High Bandwidth"

The maximum range for modulation bandwidth is available. However, phase noise is increased for low modulation frequencies. The range for ϕM deviation is limited.

This mode is recommended for high modulation frequencies.

Modulation

"High Deviation"

The maximum range for ϕM deviation is available. Phase noise is improved for low frequencies compared to the default mode. The range of modulation frequency is limited (see data sheet). This mode is recommended for low modulation frequencies and/or

high \$\phi M\$ deviation.

"Low Noise"

Phase modulation with phase noise and spurious characteristics close to CW mode. The range for modulation bandwidth and PM deviation is limited (see data sheet).

Remote command:

[:SOURce<hw>]:PM:MODE on page 525

φM Deviation

Sets the modulation deviation in RAD.

The maximum deviation depends on the RF frequency set and the selected modulation mode (see data sheet). It is possible to enter a deviation that is too high for a certain RF frequency or to vary the RF frequency to a range in which the deviation can no longer be set. In this case the maximum possible deviation is set and an error message is displayed.

The deviation of the internal source must not exceed the deviation of the external source.

Remote command:

```
[:SOURce]:PM<ch>[:DEViation] on page 524
```

Shape

Selects the waveform shape of the LF signal.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe on page 501

Frequency - LF Generator

The frequency of the LF generator 1/2.

This setting affects all analog modulations which use the LF generator as the internal modulation source.

It depends on the used shape:

"Sine"

Sets the repetition frequency of the internal signal. In this case the signal period results from this value, indicated in Period.

"Pulse, Triangle or Trapezoid"
 Indicates the frequency resulting from the set signal Period.

Remote command:

```
[:SOURce]:LFOutput<ch>:FREQuency on page 483
```

Period (Sine Shape) – LF Generator

Indicates the period of the LF sine signal. It is determined by the repetition frequency of the internal signal, see Frequency.

Modulation

Period (Pulse, Triangle, Trapezoid Shape) - LF Generator

Sets the period of the current LF signal. The period determines the repetition frequency of the internal signal, see Frequency.

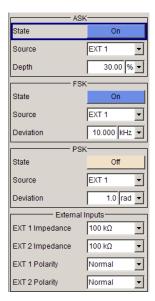
Remote command:

```
[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod on page 502
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod on page 503
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:PERiod on page 504
```

5.5.5 Digital Modulation

An internal and/or external source can be selected for digital modulation. The internal pulse generator source is available as internal source for a fully equipped instrument.

Two external input connectors for external feed of digital modulation signals are located on the front panel of the instrument.


This modulation mode requires option R&S SMF-B20.

Activating a digital modulation mode can deactivate another digital or analog modulation modes. For an overview about the operating modes which operate simultaneously, see "Simultaneous Operation of Several Modulations or Other Operating Modes" on page 258.

5.5.5.1 Digital Modulation Menu

To open the "Phase Modulation" menu, select "Modulation > Configure > Phase Modulation" or use the MENU key under "Modulation".

The combined dialog provides selection between the following modulation modes:

 In the "ASK" section, the modulation signal of type ASK (amplitude shift keying) is configured.

Modulation

• In the "FSK" section, the modulation signal of type FSk (frequency shift keying) is configured.

- In the "PSK" section, the modulation signal of type PSK (phase shift keying) is configured.
- In the "External Inputs" section, the impedance and polarity of the external inputs EXT 1 and/or EXT 2 are configured. These settings affect all modulations which use the same external modulation sources. For a detailed description, see "External Analog Modulation Sources" on page 257.

State - ASK

Activates/deactivates ASK modulation.

Remote command:

[:SOURce<hw>]:DM:ASK:STATe on page 467

Source - ASK

Selects the source for the ASK modulation signal.

"EXT 1/2" Selects the external inputs (either EXT 1 or EXT 2) as the source for

ASK modulation.

"Pulse Genera- Selects the internal pulse generator as source for ASK modulation.

tor"

"Random" Selects random pulses generated by the noise generator as the

source for ASK modulation.

Remote command:

[:SOURce<hw>]:DM:ASK:SOURce on page 466

Depth - ASK

Sets the modulation depth for ASK modulation.

Remote command:

[:SOURce<hw>]:DM:ASK:DEPTh on page 466

State - FSK

Activates/deactivates FSK modulation.

Remote command:

```
[:SOURce<hw>]:DM:FSK:STATe on page 468
```

Source - FSK

Selects the source for the FSK modulation signal.

"EXT 1/2" Selects the external inputs (either EXT 1 or EXT 2) as the source for

FSK modulation.

"Pulse Genera- Selects the internal pulse generator as source for FSK modulation.

tor"

"Random" Selects random pulses generated by the noise generator as the

source for FSK modulation.

Remote command:

[:SOURce<hw>]:DM:FSK:SOURce on page 468

Modulation

Deviation - FSK

Sets the frequency deviation for FSK modulation.

Remote command:

[:SOURce<hw>]:DM:FSK:DEViation on page 468

State - PSK

Activates/deactivates PSK modulation.

Remote command:

[:SOURce<hw>]:DM:PSK:STATe on page 469

Source - PSK

Selects the source for the PSK modulation signal.

"EXT 1/2" Selects the external inputs (either EXT 1 or EXT 2) as the source for

PSK modulation.

"Pulse Genera- Selects the internal pulse generator as source for PSK modulation.

tor"

"Random" Selects random pulses generated by the noise generator as the

source for PSK modulation.

Remote command:

[:SOURce<hw>]:DM:PSK:SOURce on page 469

Deviation - PSK

Sets the frequency deviation for PSK modulation.

Remote command:

[:SOURce<hw>]:DM:PSK:DEViation on page 469

5.5.6 Pulse Modulation (PM)

External and internal pulse modulation is available for the basic unit of the R&S SMF equipped with the pulse modulation options.

The external signal is input via the PULSE IN connector at the front of the instrument. The connector can be used as trigger input for internal pulse modulation. The external pulse signal is output at the VIDEO connector at the back of the instrument.

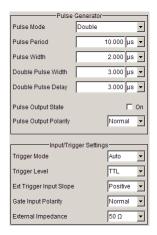
Narrow pulse modulation is provided by option R&S SMF-K3. Internal pulse modulation with extended features, e.g. generation of double pulse, requires option R&S SMF-K23, Pulse Generator. The generation of a pulse train requires option R&S SMF-K27.

The pulse signal is output at the PULSE OUT connector at the front of the instrument.

It is not possible to use pulse modulation simultaneously with digital amplitude modulation or with digital frequency modulation.

5.5.6.1 Pulse Modulation Settings

Modulation


✓ Modulation ON Amplitude Modulation... Frequency Modulation... Phase Modulation... Pulse Modulation... To open the "Pulse Modulation" menu, select "Modulation > Configure > Pulse Modulation", or select "Pulse Mod > Configure > Pulse Modulation", or use the MENU key under "Modulation".

In the upper section of the menu, the modulation source is selected and the modulation switched on. The configuration of the selected external and/or internal modulation source is performed in the lower section of the menu.

The menu varies according to the selected modulation source.

In case of modulation source pulse generator, the settings for the pulse characteristics and the trigger are provided in the "Pulse Generator" section of the "Pulse Modulation" dialog. Option R&S SMF-K23 provides extended features, for example generation of double pulse or selection of trigger mode. For description of the pulse generator dialog, see Chapter 5.6.3, "Pulse Generator", on page 297.

Option R&S SMF-K27 enables the generation of pulse trains. For description of the pulse train dialog, see Chapter 5.6.3.2, "Pulse Train Generation", on page 301.

In the "Input/Trigger Settings" section, the external input and trigger are configured.

State

Activates pulse modulation.

If modulation source Pulse Generator is selected (requires option R&S SMF-K23), the pulse generator is switched on/off, in addition.

When the internal modulation source (pulse generator) is selected, the pulse generator is switched on automatically and the video/sync signal is output at the PULSE VIDEO output at the rear of the instrument. Signal output can be switched off in the "Pulse Generator" dialog (see Chapter 5.6.3, "Pulse Generator", on page 297).

Remote command:

[:SOURce<hw>]:PULM:STATe on page 544

Modulation

Source

Selects the modulation signal source for pulse modulation.

"Pulse Generator"

Uses the pulse generator as modulation signal source.

The internal pulse generator signal is provided at the PULSE OUT output.

Without option R&S SMF-K23:

The internally generated rectangular signal is used for the pulse modulation. The frequency of the internal signal can be set in the LF Output menu.

With option R&S SMF-K23:

If option R&S SMF-K23 is installed, the characteristics of the generated pulse can be set in a wide range, and double pulse generation is possible. The settings are made in the "Pulse Generator" section of the menu.

"External" Uses an externally applied modulation signal.

The external modulation signal is input via the PULSE IN connector.

"Random" Uses random pulses generated by the noise generator for pulse mod-

ulation.

Remote command:

[:SOURce<hw>]:PULM:SOURce on page 544

Polarity

(External Source only)

Selects the polarity of the modulation signal.

"Normal" The RF signal is **On** while the level is high at the modulation input.

"Inverted" The RF level is ON while the level is LOW at the modulation input.

Remote command:

[:SOURce<hw>]:PULM:POLarity on page 543

Synchronize to internal clock - Pulse Modulation

(External Source only)

When enabled, the external modulation signal is synchronized to the internal 200 MHz reference before it is passed to the pulse modulator. Since most instrument capabilities are timed by the same reference, the edges of the modulation signal can be synchronized e.g. to RF or to pulse modulator outputs if instrument is set up accordingly.

When disabled, the signal is passed asynchronously to the modulator.

Remote command:

[:SOURce<hw>]:PULM:SYNC on page 544

Video Polarity - Pulse Modulation

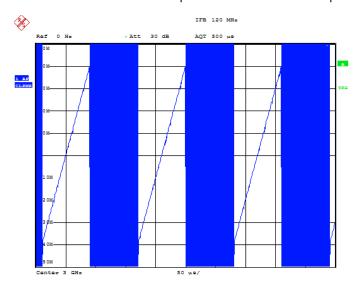
Selects the polarity of the pulse video output.

"Normal" The video signal level is HIGH while the RF level is ON.

The video signal level is LOW while the RF level is ON.

Modulation

Remote command:


[:SOURce<hw>]:PULM:OUTPut:VIDeo:POLarity on page 542

5.5.7 Chirp Modulation

Chirp modulation is used in radar technique to achieve pulse compression. Pulse compression increases the sensitivity and resolution of radar systems by modifying transmitted pulses to improve their auto-correlation properties. To chirp the radar signal is one way of accomplishing this. A chirp is a signal in which the frequency increases or decreases over time.

The R&S SMF always uses chirp modulation together with pulse modulation. The modulation signals for FM and Pulse modulator are generated and synchronized internally. The internal pulse generator is used as the modulation source for the pulse modulator and the internal LF generator as source for the frequency modulation. Normal FM mode is used. Using external modulation signals is not possible for chirp modulation.

The following graph shows the FM demodulated signal of chirped pulses with a chirp bandwidth of 80 MHz and a pulse width of 80 us. Chirp direction is up.

Date: 10.MAR.2008 15:38:01

Chirp modulation is available for the basic unit (R&S SMF + frequency option R&S SMF-B10x) equipped with option R&S SMF-B20 (AM/FM/PHIM/LOG AM Modulator), R&S SMF-K3 (Narrow Pulse Modulator) and R&S SMF-K23 (Pulse Generator).

The PULSE IN connector at the rear of the instrument this connector can be used as external trigger or gate signal input.

The polarity and input impedance of the connector can be selected.

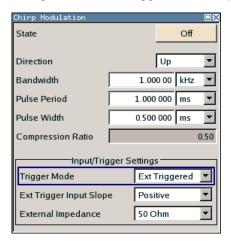
The pulse signal is output at the PULSE OUT connector at the rear of the instrument, the sync signal at the SYNC output.

The FM modulation signal can be output at the LF connector.

Modulation


All other analog modulations are deactivated during chirp modulation!

When chirp modulation is activated, any active analog modulation is automatically switched off.


The Sample&Hold measurement for the ALC is performed at the chirp center frequency. Therefore, the frequency response of the RF path may result in level errors for the FM modulated carrier especially with high chirp bandwidths.

5.5.7.1 Chirp Modulation Settings

The "Chirp modulation" dialog is opened in the "Modulation" function block or using the MENU key under "Modulation".

In the upper section of the menu, the modulation is configured and switched on. The configuration of the trigger source is performed in the lower section of the menu.

State - Chirp Modulation

Activates/deactivates chirp modulation

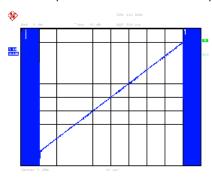
Note: Any active modulation is automatically switched off when chirp modulation is activated.

The pulse generator signal is provided at the "PULSE OUT" output, the sync signal at the "SYNC" output.

These outputs are automatically switched on/off according to the chirp modulation state. The FM modulation signal can be output at the LF connector.

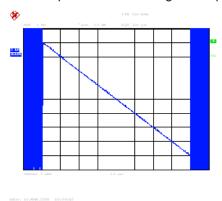
Remote command:

[:SOURce<hw>]:CHIRp:STATe on page 454


Direction - Chirp Modulation

Selects the direction of the chirp modulation.

Modulation


"Up"

The chirp starts with the lower frequency.

"Down"

The chirp starts with the higher frequency.

Remote command:

[:SOURce<hw>]:CHIRp:DIRection on page 453

Bandwidth - Chirp Modulation

Sets the modulation bandwidth in Hz.

The bandwidth denotes the difference between the maximum and minimum frequency, e.g. a bandwidth of 10 MHz at a center frequency of 1 GHz leads to a frequency modulation between 995 MHz and 1005 MHz.

The maximum bandwidth depends on the currently set RF frequency (see data sheet). It is possible to enter a bandwidth that is too high for a certain RF frequency or to vary the RF frequency to a range in which the bandwidth can no longer be set. In this case the maximum possible bandwidth is set and an error message is displayed.

Remote command:

[:SOURce<hw>]:CHIRp:BANDwidth on page 453

Pulse Period - Chirp Modulation

Sets the period of the generated chirp. Option R&S SMF-K23 provides a resolution of 20 ns.

Remote command:

[:SOURce<hw>]:CHIRp:PULSe:PERiod on page 454

Modulation

Pulse Width - Chirp Modulation

Sets the width of the generated chirp. The pulse width must be at least 1 us less than the set pulse period. Option R&S SMF-K23 provides a resolution of 20 ns.

Remote command:

[:SOURce<hw>]:CHIRp:PULSe:WIDTh on page 454

Compression Ratio - Chirp Modulation

Indicates the pulse compression ratio, i.e. the product of pulse width [s] and bandwidth [Hz]. Pulse compression increases the range resolution as well as the signal to noise ratio of pulsed signals.

Remote command:

[:SOURce<hw>]:CHIRp:COMPression:RATio? on page 453

Trigger Mode - Chirp Modulation

Selects the trigger mode for chirp modulation signals.

Note: An external trigger signal is supplied via the PULSE IN connector.

"Auto" The chirp modulation signals are generated continuously.

"Ext Single" The chirp modulation signals are triggered by an external trigger

event.

"Ext Gated" The chirp modulation signals are gated by an external gate signal.

Remote command:

[:SOURce<hw>]:CHIRp:TRIGger:MODE on page 456

Trigger Level – Chirp Modulation

Selects the external trigger level (threshold TTL, 0.5 V or -2.5 V).

Remote command:

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:LEVel on page 455

External Trigger Input Slope - Chirp Modulation

Sets the polarity of the active slope of an applied trigger signal.

Note: An external trigger signal is supplied via the PULSE IN connector.

"Positive" The chirp modulation signals are triggered on the positive slope of the

external trigger signal.

"Negative" The chirp modulation signals are triggered on the negative slope of

the external trigger signal.

Remote command:

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:SLOPe on page 456

Gate Input Polarity - Chirp Modulation

Selects the polarity of the Gate signal.

Note: An external gate signal is supplied via the PULSE IN connector.

"Normal" The chirp modulation signals are generated while the gate signal is

high.

"Inverse" The chirp modulation signals are generated while the gate signal is

low.

Modulation Generator, Pulse Generator and LF Output

Remote command:

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:GATE:POLarity on page 455

External Impedance - Chirp Modulation

Selects the input impedance for the external trigger and gate signal input (10 kOhm or 50 Ohm).

Remote command:

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:IMPedance on page 455

5.6 Modulation Generator, Pulse Generator and LF Output

5.6.1 LF Gen./Noise

The "LF Gen./Noise" block provides two internal LF generators which can be used as internal modulation sources for analog modulations (amplitude modulation, frequency modulation, phase modulation) and a noise generator. The LF/Noise generators can also be used as the signal source for the LF output at the front of the instrument.

The internal LF/Noise generators require option R&S SMF-B20.

Both LF generators providing sinusoidal signals in the frequency range 0.1 Hz to 10 MHz with selectable signal shapes e.g. sine waves, triangle/ pulse/ trapezoid signals.

The LF frequency settings for the LF generator can be made in the LF Gen./Noise menu, LF Output menu, and analog modulation menus.

A change to the frequency of the LF generator automatically has an effect on modulation if the LF generator is selected as the modulation source. For example, a change to the frequency of the first LF generator automatically has an effect on the amplitude modulation if the first LF generator is selected as the AM modulation source (i.e. LF Generator 1 is selected as Source). On the other hand, changing the frequency in the Amplitude Modulation menu has an effect to the LF output signal.

The LF frequency sweep mode is activated in the LF Frequency Sweep menu. The LF level sweep is activated in the LF Level Sweep menu of the "LF Output" block.

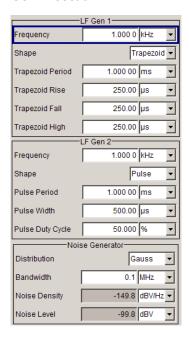
The noise generator supplies noise with selectable bandwidth and level distribution.

The LF frequency sweep mode is activated in the "LF Frequency Sweep" dialog of the "LF Gen./Noise" block (see Chapter 5.6.1.3, "LF Frequency Sweep", on page 280). The LF level sweep is activated in the "LF Level Sweep" dialog of the "LF Output" block (see Chapter 5.6.2.2, "LF Level Sweep", on page 290).

Modulation Generator, Pulse Generator and LF Output

5.6.1.1 LF Generator Settings

The "LF Generator/Noise" is used to perform the settings regarding the LF and noise generation.



To open the "LF Generator/Noise" dialog, select "LF Gen./Noise > Configure > LF Gen./Noise" or use the MENU key under "LF Gen./Noise".

The LF Gen. 1/2 sections provide frequency and waveform shape settings for the two LF generators. In the "Noise Generator section", the settings for the noise source are provided.

The LF Gen. 1 section provides frequency and waveform shape settings for the first LF generator.

According to LF Gen. 1, the settings for the second LF generator are made in the LF Gen. 2 section.

Frequency - LF Generator

The frequency of the LF generator 1/2.

This setting affects all analog modulations which use the LF generator as the internal modulation source.

It depends on the used shape:

- "Sine"
 - Sets the repetition frequency of the internal signal. In this case the signal period results from this value, indicated in Period.
- "Pulse, Triangle or Trapezoid"
 Indicates the frequency resulting from the set signal Period.

Remote command:

[:SOURce]:LFOutput<ch>:FREQuency on page 483

Modulation Generator, Pulse Generator and LF Output

Shape

Selects the waveform shape of the LF signal.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe on page 501

Period (Sine Shape) – LF Generator

Indicates the period of the LF sine signal. It is determined by the repetition frequency of the internal signal, see Frequency.

Pulse Period - LF Generator

(This feature is available for shape mode Pulse only)

Sets the period of the generated pulse shape. The period determines the repetition frequency of the internal signal.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod on page 502

Pulse Width - LF Generator

(This feature is available for shape mode Pulse only)

Sets the width of the generated pulse. The width determines the pulse length.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:WIDTh on page 502

Pulse Duty Cycle – LF Generator

(This feature is available for shape mode Pulse only)

Sets the duty cycle for the shape pulse.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:DCYCle on page 502

Triangle Period – LF Generator

(This feature is available for shape mode Triangle only)

Sets the period of the generated triangle shape. The period determines the repetition frequency of the internal signal.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:PERiod on page 504

Triangle Rise – LF Generator

(This feature is available for shape mode Triangle only)

Sets the triangle shape rise time.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:RISE on page 504

Trapezoid Period – LF Generator

(This feature is available for shape mode Trapezoid only)

Sets the period of the generated trapezoid shape. The period determines the repetition frequency of the internal signal.

Modulation Generator, Pulse Generator and LF Output

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod on page 503

Trapezoid Rise - LF Generator

(This feature is available for shape mode Trapezoid only)

Sets the trapeze shape rise time.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:RISE on page 504

Trapezoid Fall - LF Generator

(This feature is available for shape mode Trapezoid only)

Sets the fall time for the trapeze shape of the LF generator.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:FALL on page 503

Trapezoid High - LF Generator

(This feature is available for shape mode Trapezoid only)

Sets the high time for the trapeze shape of the LF generator.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:HIGH on page 503

5.6.1.2 Noise Settings

The parameters for the level distribution and the bandwidth for the noise source are provided in the "Noise Generator" section of the dialog. The settings affect all analog modulations which use the noise generator as the internal modulation source.

Distribution - Noise

Selects the noise power density distribution of the noise.

"Gaussian" The noise power density has a Gaussian distribution.

"Equal" The noise power density has an even distribution.

Remote command:

[:SOURce<hw>]:NOISe:DISTribution on page 521

Bandwidth - Noise

Enters the noise bandwidth. Distinct bandwidth settings between 100 kHz and 10 MHz in 100 kHz steps (range 100 .. 1 MHz), 1 MHz (range 1 MHz .. 5 MHz) and 5 MHz (5 MHz ... 10 MHz) are possible.

The noise signal is generated within the set frequency bandwidth. The noise level in the frequency band is indicated at Noise level (System Bandwidth).

Remote command:

[:SOURce<hw>]:NOISe:BANDwidth|BWIDth on page 521

Noise Density - Noise

Indicates the level of the noise signal for a bandwith of 1 Hz.

Modulation Generator, Pulse Generator and LF Output

Remote command:

[:SOURce<hw>]:NOISe:LEVel:RELative? on page 522

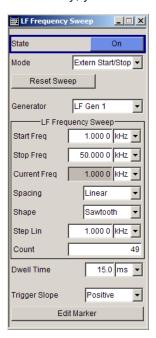
Noise Level - Noise

Indicates the level of the noise signal per Hz in the total bandwidth.

Remote command:

[:SOURce<hw>]:NOISe:LEVel[:ABSolute]? on page 522

5.6.1.3 LF Frequency Sweep


The "LF Frequency Sweep" dialog is used to configure and activate an LF frequency sweep signal.

To open the dialog, select "LF Gen./Noise > Configure > LF Frequency Sweep" or use the MENU key under "LF Gen./Noise".

The LF sweep mode is activated and the sweep mode is selected. The buttons are used to reset the LF sweep (all sweep modes) or to execute the LF sweep ("Single" mode).

The sweep range, sweep spacing and dwell time are set in the bottom of the section.

Additionally, you can set the trigger slope.

State

Activates the LF frequency sweep signal generation.

Note:

Activating a sweep mode automatically deactivates other sweeps and the list mode.

Remote command:

[:SOURce<hw>]:LFOutput:FREQuency:MODE on page 484

Modulation Generator, Pulse Generator and LF Output

Mode

Selects the LF frequency sweep mode.

If you change the sweep mode during the execution, the signal generator stops the sweep and starts with the next trigger event at the initial value.

The "Reset Sweep" button sets the sweep to the start value.

"Auto"

Generates a continuously repeating sweep signal immediately after activating the sweep mode.

The sweep steps are performed atomatically, controlled by the dwell time, see "Dwell Time - LF Sweep" on page 286.

Example:

SOUR:LFO:SWE:FREQ:MODE AUTO
TRIGO:SWE:SOUR AUTO
SOUR:LFO:FREQ:MODE SWE

"Single"

Generates a single sweep cycle after a trigger event.

The sweep steps within the cycle are performed automatically, controlled by the dwell time. If one cycle is completed, the instrument waits for the next trigger event.

To trigger the sweep, use "Execute Single Sweep" button, or the corresponding remote control commands, for example *TRG.

Example:

SOUR:LFO:SWE:FREQ:MODE AUTO
TRIGO:SWE:SOUR SING
SOUR:LFO:FREQ:MODE SWE
SOUR:LFO:SWE:FREQ:EXEC

"Step"

Generates the sweep signal step-by-step, manually triggered.

To perform the sweep steps, enter the frequency value under Current Freq.

Example:

SOUR:LFO:SWE:FREQ:MODE MAN
SOUR:LFO:FREQ:MODE SWE
SOUR:LFO:SWE:FREQ:SPAC LIN
SOUR:LFO:SWE:FREQ:STEP:LIN 1E34
SOUR:LFO:FREQ:MAN 12 kHz

The value entered with command

SOUR: LFO: SWE: FREQ: STEP: LIN | LOG sets the step width.

The value entered with command SOUR: LFO: FREQ: MAN has no effect, the command only sets the next sweep step. In remote control only a step-by-step sweep from start to stop frequency is possible.

Modulation Generator, Pulse Generator and LF Output

"Extern Single"

Generates a single sweep cycle when an a external trigger event occurs.

The sweep steps within the cycle are performed automatically, controlled by the dwell time. If one cycle is completed, the instrument waits for the next trigger event.

To trigger the sweep, apply an external trigger signal. Refer to the description of the rear panel for information on the connectors for external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

SOUR:LFO:SWE:FREQ:MODE AUTO
TRIGO:SWE:SOUR EXT

SOUR: LFO: FREQ: MODE SWE (External trigger)

"Extern Step"

Generates the sweep signal step-by-step, manually triggered. To trigger a sweep step, apply an external trigger signal. The step width corresponds to the step width set for the rotary knob.

Example:

SOUR:LFO:SWE:FREQ:MODE AUTO
TRIGO:SWE:SOUR EXT
SOUR:LFO:FREQ:MODE SWE (External trigger)

"Extern Start/ Stop"

Generates a continuously repeating sweep signal that is started, stopped and restarted by subsequent external trigger events. The sweep steps are performed automatically, controlled by the dwell time

Refer to the description of the rear panel for information on the connectors for the external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

SOUR:LFO:SWE:FREQ:MODE AUTO
TRIGO:SWE:SOUR EAUT
SOUR:LFO:FREQ:MODE SWE (External trigger)

Remote command:

```
[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:MODE on page 490
:TRIGger<hw>[:SWEep]:SOURce on page 599
[:SOURce<hw>]:LFOutput:FREQuency:MODE on page 484
```

Execute Single Sweep

Starts a sweep manually. This trigger button is displayed in "Single" mode.

Modulation Generator, Pulse Generator and LF Output

Example:

```
SOUR:LFO:SWE:FREQ:MODE AUTO
TRIG:LFFS:SWE:SOUR SING
TRIG:LFFS
```

Remote command:

```
[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:EXECute on page 487
:TRIGger<hw>:LFFSweep:IMMediate on page 597
:TRIGger<hw>:LFFSweep on page 596
:TRIGger<hw>[:IMMediate] on page 601
```

Reset Sweep

Resets a sweep.

With the next trigger event, the sweep starts with at the initial value.

Remote command:

```
[:SOURce<hw>]:SWEep:RESet[:ALL] on page 574
```

Specific Sweep Parameters

The sweep parameters described in this topic are only available for particular emulation languages.

For details, see 1GP92 "Remote Emulation with the R&S SMF microwave signal generator".

Mode ← Specific Sweep Parameters

Selects the RF frequency sweep mode.

("Auto" = timer controlled, "Manual" = manually controlled)

Repeat ← Specific Sweep Parameters

Sets the repetition mode.

```
("On" = continuously; "Off" = once)
```

Start Trigger ← Specific Sweep Parameters

Selects the mode to initiate a sweep.

("Auto" = starts immediately; "Single" = starts with a command (Bus); "External" = starts with an external trigger signal)

Point Trigger ← **Specific Sweep Parameters**

Selects the mode to trigger the progress of each step.

```
("Auto" = immediately; "Single" = remotely (Bus); "External" = external signal)
```

Generator

Selects the source for LF sweeps.

Remote command:

```
[:SOURce]:LFOutput:SWEep[:FREQuency]:LFSource on page 488
```

Modulation Generator, Pulse Generator and LF Output

Start Freq

Sets the start frequency.

Remote command:

[:SOURce<hw>]:LFOutput:FREQuency:STARt on page 485

Stop Freq

Sets the stop frequency.

Remote command:

[:SOURce<hw>]:LFOutput:FREQuency:STOP on page 486

Current Freq

Displays the current frequency.

In sweep "Step" mode, the parameter is editable and you can enter frequency for the next step.

Remote command:

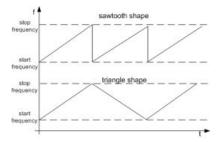
```
[:SOURce<hw>]:LFOutput:FREQuency:MANual on page 484
```

Spacing

Selects the mode for the calculation of the frequency sweep intervals.

"Linear" Takes the frequency value entered as an absolute value in Hz

"Logarithmic" Takes the value entered as a lograithmic value, that means as a con-


stant fraction of teh current frequency in %.

Remote command:

```
[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:SPACing on page 493
```

Shape

Selects the waveform shape of the sweep signal.

"Sawtooth" The sweep runs from the start to the stop frequency. Each subse-

quent sweep starts at the start frequency, that means the shape of

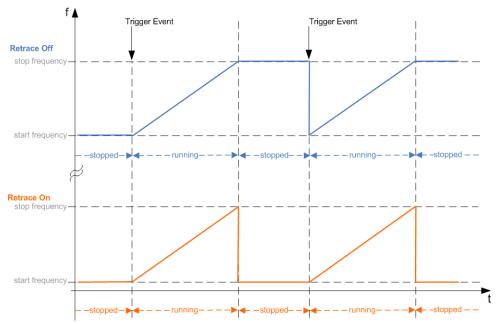
the sweep sequence resembles a sawtooth.

"Triangle" The sweep runs from start to stop frequency and back, that means

the shape of the sweep resembles a triangle. A subsequent sweep

starts at the start frequency.

Remote command:


```
[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:SHAPe on page 493
```

Modulation Generator, Pulse Generator and LF Output

Retrace - LF Frequency Sweep

Activates that the signal changes to the start frequency value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single", see Mode.

Remote command:

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:RETRace on page 492

Step Lin/Log - LF Sweep

Sets the step width for the individual frequency sweep steps.

At each step this value is added to the current frequency.

Depending on the Spacing mode you have set, the corresponding parameter is displayed.

"Step Lin" The step width is a constant value in Hz.

Remote command:

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP[:LINear] on page 494

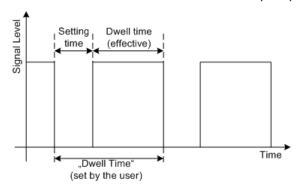
"Step Log" The step width is determined logarithmically in %, that means as a constant fraction of the current frequency.

Remote command:

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic on page 495

Count - LF Frequency Sweep

Sets the number of sweep steps.


Remote command:

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:POINts on page 491

Modulation Generator, Pulse Generator and LF Output

Dwell Time - LF Sweep

Defines the duration of the individual sweep steps.

The "Dwell Time" set by the user is used as the step time of the sweep. The effective net dwell time is shorter, reduced by the setting time. This setting time may be greater than the time specified in the data sheet.

Note:

It is recommended to switch off the display update for optimum sweep performance especially with short dwell times (see Chapter 5.2.3.8, "Display Update", on page 113).

Remote command:

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:DWELl on page 487

Ext. Trigger Input Slope

Sets the polarity of the active slope of an externally applied instrument trigger.

This setting affects the TRIGGER input (BNC connector at the rear of the instrument or the AUX connector).

"Positive" activates the rising edge of the trigger signal.

"Negative" activates the falling edge of the trigger signal.

Remote command:

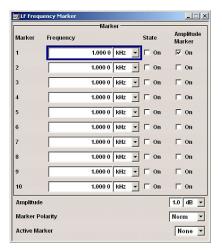
[:SOURce]:INPut:TRIGger:SLOPe on page 481

Edit Marker

Opens a dialog used for setting and editing the markers.

For a detailed description, see

- "RF Frequency Marker" on page 171
- Chapter 5.6.1, "LF Gen./Noise", on page 276


Remote command:

n.a.

5.6.1.4 LF Frequency Marker Settings

The "LF Frequency Marker" dialog is called via the EDIT MARKER button in the "LF Frequency Sweep" menu.

Modulation Generator, Pulse Generator and LF Output

Up to ten frequency markers can be defined. The frequency of the marker signal at the MARKER output changes according to the selected polarity when the frequency mark is reached. For each of these markers an amplitude marker can be activated in addition. If activated, the marker signal is attenuated by the set amplitude when the frequency mark is reached. Only one marker is output at the MARKER output at one time.

Marker - LF Frequency Marker

Displays the marker index.

Remote command:

n.a.

Frequency - LF Frequency Marker

Enters the frequency for the corresponding marker. If the marker is activated, the signal level at the MARKER output changes on reaching this frequency mark.

Remote command:

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:FREQuency
on page 489

State - LF Frequency Marker

Switches in or off the selected marker. If on, the marker is output at the MARKER output on reaching the mark.

Remote command:

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:FSTate on page 489

Amplitude Marker - LF Frequency Marker

Activates or deactivates the selected amplitude marker. If activated, the level is reduced by the amplitude entered below on reaching the mark.

Remote command:

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:VSTate on page 490

Amplitude - LF Frequency Marker

Sets the amplitude marker attenuation. This value is valid for all markers.

Remote command:

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AMPLitude on page 488

Modulation Generator, Pulse Generator and LF Output

Marker Polarity - LF Frequency Marker

Selects the marker output polarity.

Remote command:

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity on page 568

Active Marker - LF Frequency Marker

Selects the active marker. The active marker is output with an higher voltage than all other markers.

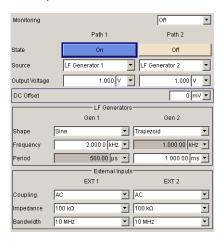
Remote command:

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:ACTive on page 488

5.6.2 LF Output

The dialog is used to perform the settings regarding the LF output.

To open the "LF Output" dialog, select "LF Output > Configure > LF Output" or use the MENU key under "LF Output".



The LF Output requires option R&S SMF-B20.

In the upper section of the dialog, the LF output is activated and configured.

The "LF Generators" section displays the parameters of the LF Generators.

In the "External Inputs" section, the external inputs are configured. For a detailed description, see "External Modulation Sources" on page 257.

5.6.2.1 LF Output Settings

Monitoring - LF Output

Selects the LF output monitoring mode. The settings for the LF output are synchronized to amplitude modulation or frequency/phase modulation settings.

Modulation Generator, Pulse Generator and LF Output

Remote command:

[:SOURce]:LFOutput:MONitor:MODE on page 486

State - LF Output

(This feature is available for monitoring mode Off only)

Activates/deactivates the LF Output.

The selected modulation signal is output at the LF output connector at the front of the instruments.

Remote command:

[:SOURce]:LFOutput<ch>[:STATe] on page 487

Source - LF Output

(This feature is available for monitoring mode Off only)

Selects the internal and/or external source to be used for the LF output signal.

"LF Generator Selects one of the internal LF generators as the source for the LF

1/2" output signal.

"EXT 1/2" Selects one of the external inputs as the source for the LF output sig-

nal.

"Noise Gener- Selects the internal noise signal. The LF output signal is noise either

ator" with gaussian distribution or equal distribution.

Remote command:

[:SOURce]:LFOutput<ch>:SOURce on page 487

Output Voltage - LF Output

(This feature is available for monitoring mode Off only)

Sets the output voltage of the LF output. The entered value determines the peak voltage.

Remote command:

[:SOURce]:LFOutput<ch>:VOLTage on page 505

DC Offset - LF Output

(This feature is available for monitoring mode Off only)

Sets a DC offset at the LF Output.

Remote command:

[:SOURce]:LFOutput:OFFSet on page 486

Shape

Selects the waveform shape of the LF signal.

Remote command:

[:SOURce<hw>]:LFOutput<ch>:SHAPe on page 501

Frequency - LF Generator

The frequency of the LF generator 1/2.

This setting affects all analog modulations which use the LF generator as the internal modulation source.

Modulation Generator, Pulse Generator and LF Output

It depends on the used shape:

• "Sine"

Sets the repetition frequency of the internal signal. In this case the signal period results from this value, indicated in Period.

"Pulse, Triangle or Trapezoid"
 Indicates the frequency resulting from the set signal Period.

Remote command:

```
[:SOURce]:LFOutput<ch>:FREQuency on page 483
```

Period (Sine Shape) - LF Generator

Indicates the period of the LF sine signal. It is determined by the repetition frequency of the internal signal, see Frequency.

Period (Pulse, Triangle, Trapezoid Shape) - LF Generator

Sets the period of the current LF signal. The period determines the repetition frequency of the internal signal, see Frequency.

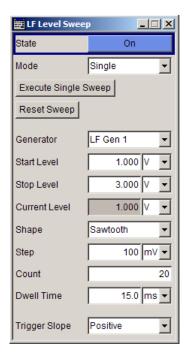
Remote command:

```
[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod on page 502
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod on page 503
[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRIangle:PERiod on page 504
```

5.6.2.2 LF Level Sweep

The "LF Level Sweep" dialog is used to configure and activate an LF level sweep signal.

To open the dialog, select "LF Output > Configure > LF Level Sweep" or use the MENU key under "LF Output".


LF Level Sweep Settings

In the top section, the LF level sweep is activated and the sweep mode is selected. The buttons are used to reset the LF sweep (all sweep modes) or to execute the LF sweep (Single mode).

In the "LF Level Sweep" section, the sweep range, and other settings regarding the sweep can be done.

In the bottom section, the dwell time and the trigger slope can be set.

Modulation Generator, Pulse Generator and LF Output

State - LF Level Sweep

Activates the LF level sweep signal generation.

Note

Activating a sweep mode automatically deactivates other sweeps and the list mode.

Remote command:

[:SOURce]:LFOutput:VOLTage:MODE on page 506

Mode - LF Level Sweep

Selects the sweep instrument operating mode and sweep mode.

If you change the sweep mode during the execution, the signal generator stops the sweep and starts with the next trigger event at the initial value.

The "Reset Sweep" button sets the sweep to the start value.

"Auto" Sets an automatic repeated sweep cycle.

Example:

SOUR: LFO: SWE: VOLT: MODE AUTO

TRIG:LFVS:SOUR AUTO
SOUR:LFO:VOLT:MODE SWE

Modulation Generator, Pulse Generator and LF Output

"Single"

Sets a single sweep cycle. The sweep is triggered by the "Execute Single Sweep" button, or by means remote trigger commands, e.g. ${}^{\star}\text{TRG}$.

Example:

SOUR: LFO: SWE: VOLT: MODE MAN

TRIG:LFVS:SOUR SING
SOUR:LFO:VOLT:MODE SWE
SOUR:LFO:SWE:VOLT:EXEC

"Step"

Sets a step-by-step sweep cycle. Each sweep step is triggered by a variation of the value in the "Current Freq" entry window. If this mode is activated, the cursor moves to the value displayed for "Current Freq".

Example:

SOUR: LFO: SWE: VOLT: MODE STEP

TRIG:LFVS:SOUR SING
SOUR:LFO:VOLT:MAN 12kHz
TRIG:LFVS:SOUR SING
SOUR:LFO:VOLT:MODE SWE
SOUR:LFO:VOLT:MAN 14kHz
SOUR:LFO:VOLT:MAN 16kHz

"Extern Single"

Sets a single sweep cycle. The sweep is triggered by an external trigger signal.

The external trigger signal is input at the rear of the instrument (BNC connector TRIGGER or AUX connector).

The "Reset Sweep" button resets the sweep to the start flevel.

Example:

SOUR:LFO:SWE:VOLT:MODE MAN TRIG:LFVS:SOUR EXT

SOUR: LFO: VOLT: MODE SWE

"Extern Step"

Sets a step-by-step sweep cycle. Each sweep step is triggered by an external trigger signal (trigger source as described under "Extern Single"). The step width corresponds to the step width set for the rotary knob.

Example:

SOUR:LFO:SWE:VOLT:MODE STEP SOUR:LFO:SWE:VOLT:STEP:LIN 2

TRIG:LFVS:SOUR EXT
SOUR:LFO:VOLT:MODE SWE

Modulation Generator, Pulse Generator and LF Output

"Extern Start/ Stop" Sets an automatically repeated sweep cycle that is started, stopped and restartet by subsequent external trigger events.

The first external trigger signal starts the sweep (Start).

The next external trigger signal stops the sweep at the current LF frequency (Stop).

The third external trigger signal starts the sweep at the start frequency (Start).

Refer to the description of the rear panel for information about the connectors for external trigger signal input (see Chapter 2.2, "Rear Panel Tour", on page 25).

Example:

SOUR: LFO: SWE: VOLT: MODE AUTO

TRIG:LFVS:SOUR EAUT

SOUR: LFO: VOLT: MODE SWE (External trigger)

Remote command:

```
[:SOURce]:LFOutput:SWEep:VOLTage:MODE on page 498
:TRIGger<hw>:LFVSweep:SOURce on page 597
[:SOURce]:LFOutput:VOLTage:MODE on page 506
```

Specific Sweep Parameters

The sweep parameters described in this topic are only available for particular emulation languages.

For details, see 1GP92 "Remote Emulation with the R&S SMF microwave signal generator".

Mode ← Specific Sweep Parameters

Selects the RF frequency sweep mode.

("Auto" = timer controlled, "Manual" = manually controlled)

Repeat ← Specific Sweep Parameters

Sets the repetition mode.

("On" = continuously; "Off" = once)

Start Trigger ← **Specific Sweep Parameters**

Selects the mode to initiate a sweep.

("Auto" = starts immediately; "Single" = starts with a command (Bus); "External" = starts with an external trigger signal)

Point Trigger ← **Specific Sweep Parameters**

Selects the mode to trigger the progress of each step.

("Auto" = immediately; "Single" = remotely (Bus); "External" = external signal)

Execute Single Sweep - LF Level Sweep

Triggers the sweep manually. A manual sweep can only be triggered if "Mode Single" is selected.

Modulation Generator, Pulse Generator and LF Output

Example:

SOUR: LFO: SWE: VOLT: MODE AUTO

TRIG:LFVS:SOUR SING SOUR:LFO:VOLT:MODE SWE

Remote command:

```
[:SOURce]:LFOutput:SWEep:VOLTage:EXECute on page 496
:TRIGger<hw>:LFVSweep[:IMMediate] on page 598
:TRIGger<hw>[:IMMediate] on page 601
```

Reset Sweep - LF Level Sweep

Resets the sweep. The start frequency is set and the next sweep starts from there.

Remote command:

```
[:SOURce<hw>]:SWEep:RESet[:ALL] on page 574
```

Generator - LF Level Sweep

Sets the source for the LF level sweep.

Remote command:

```
[:SOURce]:LFOutput:SWEep:VOLTage:LFSource on page 496
```

Start Level - LF Level Sweep

Sets the start frequency.

Remote command:

```
[:SOURce]:LFOutput:VOLTage:STARt on page 506
```

Stop Level - LF Level Sweep

Sets the stop frequency.

Remote command:

```
[:SOURce]:LFOutput:VOLTage:STOP on page 507
```

Current Level - LF Level Sweep

Displays the current frequency.

If "Step" is set, the frequency for the next frequency step of the sweep is entered here.

Remote command:

```
[:SOURce]:LFOutput:VOLTage:MANual on page 505
```

Shape - LF Level Sweep

Selects the cycle mode for a sweep sequence (shape) .

"Sawtooth" One sweep runs from the start level to the stop level. The subsequent

sweep starts at the start level again, i.e. the shape of sweep

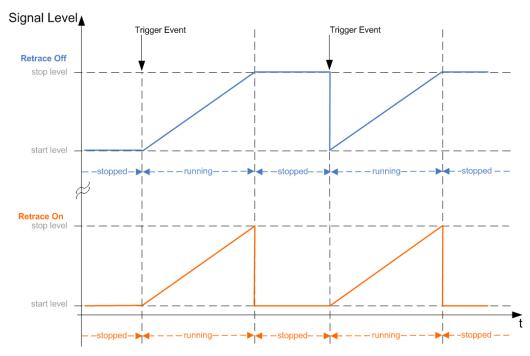
sequence resembles a sawtooth.

"Triangle" One sweep runs from start to stop level and back, i.e. the shape of

the sweep resembles a triangle. Each subsequent sweep starts at the

start level again.

Remote command:


```
[:SOURce]:LFOutput:SWEep:VOLTage:SHAPe on page 499
```

Modulation Generator, Pulse Generator and LF Output

Retrace - LF Level Sweep

Activates that the signal changes to the start level value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single".

Remote command:

[:SOURce]:LFOutput:SWEep:VOLTage:RETRace on page 499

Step - LF Level Sweep

Sets the step width for the individual sweep steps.

Remote command:

[:SOURce]:LFOutput:SWEep:VOLTage:STEP[:LINear] on page 500

Count - LF Level Sweep

Sets the number of sweep steps.

Remote command:

[:SOURce]:LFOutput:SWEep:VOLTage:POINts on page 498

Dwell Time - LF Level Sweep

Sets the dwell time. The dwell time determines the duration of the individual sweep steps.

Remote command:

[:SOURce]:LFOutput:SWEep:VOLTage:DWELl on page 496

Ext. Trigger Input Slope

Sets the polarity of the active slope of an externally applied instrument trigger.

Modulation Generator, Pulse Generator and LF Output

This setting affects the TRIGGER input (BNC connector at the rear of the instrument or the AUX connector).

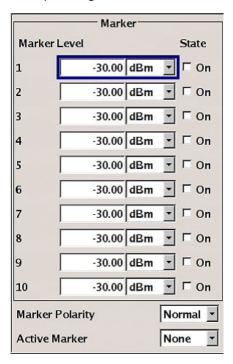
"Positive" activates the rising edge of the trigger signal.

"Negative" activates the falling edge of the trigger signal.

Remote command:

[:SOURce]:INPut:TRIGger:SLOPe on page 481

Edit Marker - Level Sweep


Opens the LF Level Marker menu. This menu is used for setting and editing the markers. For a detailed description, see Chapter 5.6.2.3, "LF Level Marker Settings", on page 296.

Remote command:

n.a.

5.6.2.3 LF Level Marker Settings

The "LF Level Marker" dialog is called via the EDIT MARKER button in the "LF Level Sweep" dialog.

Marker - LF Level Marker

Displays the index of the marker.

Remote command:

n.a.

Modulation Generator, Pulse Generator and LF Output

Level - LF Level Marker

Enters the level for the corresponding marker. If the marker is activated, the signal level at the MARKER output changes according to the set polarity on reaching the entered level.

Remote command:

[:SOURce<hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VOLTage
on page 497

State - LF Level Marker

Activates or deactivates the selected marker. If on, the marker is output at the MARKER output on reaching the mark.

Remote command:

[:SOURce<hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VSTate on page 497

Marker Polarity - LF Level Marker

Selects the marker output polarity.

Remote command:

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity on page 568

Active Marker - LF Level Marker

Selects the active marker. The active marker is output with an higher voltage than all other markers.

Remote command:

[:SOURce]:LFOutput:SWEep:VOLTage:MARKer:ACTive on page 497

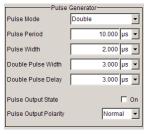
5.6.3 Pulse Generator

The "Pulse Generator" dialog is used to configure and activate a pulse modulation signal.

5.6.3.1 Pulse Generator Settings

✓ Modulation ON

Amplitude Modulation...


Frequency Modulation...

Phase Modulation...

Pulse Modulation,...

To access the pulse generator settings ...

Select "Modulation > Config... > Pulse Modulation", or select "Pulse Mod > config...
 > Pulse Modulation", or use the MENU key under "Modulation".

The dialog provides the settings for the pulse characteristics and trigger mode. Depending on the selected modulation source and pulse mode the provided parameters vary.

Modulation Generator, Pulse Generator and LF Output

Note: Extended features as the generation of double pulse signals with selectable pulse widths and periods, or selectable trigger mode require option R&S SMF-K23. Option R&S SMF-K27 enables the generation of pulse trains.

The modulation signal is output at the PULSE OUT connector.

Pulse Mode - Pulse Generator

Sets the mode of the pulse generator.

Note: Single and double are available with option R&S SMF-K23, selection pulse train requires option R&S SMF-K27.

"Single" A single pulse is generated in one pulse period.

"Double" Two pulses are generated in one pulse period. Additional settings for

the double pulse are available in the menu.

"Train" Requires option R&S SMF-K27.

A user-defined pulse train is generated. Additional settings for the pulse train are available in the menu after selection of the pulse train mode (see Chapter 5.6.3.2, "Pulse Train Generation", on page 301). A pulse train is a sequence of pulses with user-defined on and off times. The on-time/off-time value pairs are defined in a pulse train list. The currently used pulse train file is displayed in the sub menu.

Remote command:

[:SOURce<hw>]:PULM:MODE on page 542

Pulse Period - Pulse Generator

Sets the period of the generated pulse. The period determines the repetition frequency of the internal signal.

Remote command:

[:SOURce<hw>]:PULM:PERiod on page 543

Pulse Width - Pulse Generator

Sets the width of the generated pulse. The width determines the pulse length. The pulse width must be at least 20 ns less than the set pulse period.

Remote command:

[:SOURce<hw>]:PULM:WIDTh on page 555

Pulse Delay - Pulse Generator

Sets the pulse delay. The pulse delay determines the time that elapses after a trigger event before pulse modulation starts. The pulse delay is not effective for double pulse generation.

Remote command:

[:SOURce<hw>]:PULM:DELay on page 540

Double Pulse Width - Pulse Generator

(Double Pulse only)

Sets the width of the second pulse.

Remote command:

[:SOURce<hw>]:PULM:DOUBle:WIDTh on page 541

Modulation Generator, Pulse Generator and LF Output

Double Pulse Delay - Pulse Generator

(Double Pulse only)

Sets the delay from the start of the first pulse to the start of the second pulse.

Remote command:

[:SOURce<hw>]:PULM:DOUBle:DELay on page 541

Pulse Output State – Pulse Generator

Activates/deactivates the pulse generator output at the PULSE OUT connector

Remote command:

[:SOURce<hw>]:PGENerator:OUTPut[:STATe] on page 523

Output Polarity – Pulse Generator

Sets the polarity of the output signal (PULSE OUT connector).

The polarity affects internal as well as external modulation signals.

"Positive" Retains the polarity of the pulse output signal.

The pulse output signal is high during the pulse width, and low during

the rest of the pulse period.

"Negative" Inverts the polarity of the pulse signal.

Accordingly, the pulse output signal is low during the pulse width, and

otherwise high.

Remote command:

[:SOURce<hw>]:PGENerator:OUTPut:POLarity on page 522

Trigger Mode - Pulse Generator

Selects the trigger mode for pulse modulation.

Note: An external trigger signal is supplied via the PULSE IN connector.

"Auto"

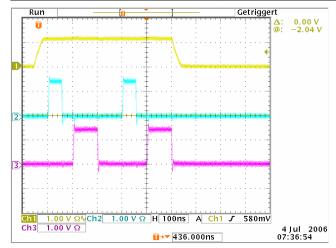
The pulse generator signal is generated continuously.

"Ext Single"

The pulse modulation is triggered by an external trigger event. The

trigger signal is supplied via the PULSE IN connector.

Modulation Generator, Pulse Generator and LF Output


"Ext Gated"

The pulse generator signal is gated by an external gate signal.

Example: Generation of pulse signals using trigger mode External Gated (Single Pulse)

The measurement is performed using a 6-dB-attenuator.

Parameter	Value
Trigger Mode	Extern Gated
Double Pulse State	Off
External Trigger Input Slope	Positive
Pulse Delay	100 ns
Pulse Width	100 ns
Pulse Period	300 ns

Channel 1 = Indicates the external gate signal. The signal is active when it is high (positive).

Channel 2 = Indicates the sync signal. The sync signal starts after a trigger delay of typically 50 ns (see specifications). It is repeated after the set pulse period of 300 ns as long as the gate signal is active.

Channel 3 = Indicates the pulse signal. The first pulse starts after the pulse delay of 100 ns. The second pulse starts after the set pulse period.

Note: The sync signal is output at the PULSE SYNC connector, and the pulse signal at the PULSE VIDEO connector.

Remote command:

[:SOURce<hw>]:PULM:TRIGger:MODE on page 550

Trigger Level - Input/Trigger Settings

Selects the external trigger level (threshold TTL, 0.5 V or -2.5 V).

Remote command:

[:SOURce<hw>]:PULM:TRIGger:EXTernal:LEVel on page 550

Modulation Generator, Pulse Generator and LF Output

External Trigger Input Slope - Pulse Generator

(External Trigger only)

Sets the polarity of the active slope of an applied trigger signal.

"Positive" The pulse generator is triggered on the positive slope of the external

trigger signal.

"Negative" The pulse generator is triggered on the negative slope of the external

trigger signal.

Remote command:

[:SOURce<hw>]:PULM:TRIGger:EXTernal:SLOPe on page 550

Gate Input Polarity - Pulse Generator

Selects the polarity of the Gate signal.

The signal is supplied via the PULSE IN connector.

"Normal" The pulse signal is generated while the gate signal is high.
"Inverse" The pulse signal is generated while the gate signal is low.

Remote command:

[:SOURce<hw>]:PULM:TRIGger:EXTernal:GATE:POLarity on page 549

External Impedance

Selects the impedance for external pulse trigger (10 kOhm or 50 Ohm).

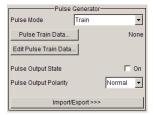
Remote command:

[:SOURce<hw>]:PULM:TRIGger:EXTernal:IMPedance on page 549

5.6.3.2 Pulse Train Generation

In "Pulse Train" mode, the instrument provides the associated parameters for configuring a user-defined pulse train signal.

A pulse train is a sequence of pulses with user-defined on and off times. The "ON Time / OFF Time" value pairs are defined in a pulse train table and can be stored in a file. The currently loaded file is displayed in the dialog. You can export an internally created pulse train list as well as import an externally created one.


In remote control mode, you must first create a data file, before you switch to pulse train mode. Otherwise you get the error message "No current list" in the "Info" line, see Example "Generating a pulse train signal" on page 539.

How to configure a pulse train signal

To perform pulse train generation, perform the following steps:

- 1. In the block diagram, select "Modulation > config... > Pulse Modulation".
- 2. Select "Source > Pulse Generator".
- 3. Select "Pulse Mode > Train".

Modulation Generator, Pulse Generator and LF Output

The instrument displays the parameters required for configuring pulse train data.

- 4. Select "Pulse Train Data... > New List / Select List or File Manager".
- 5. Navigate to the target directory and select an existing file, or create a new file by assigning the "File Name".
- 6. According to your selection, confirm with "Save" or "Select".

 The R&S SMF automatically uses the new file for further editing. Pulse train data files have the fixed file extension *.pulstrn.
- 7. In the "Pulse Modulation" dialog, select "Edit Pulse Train Data... > Edit" to define the on and off time value pairs and the repetition factor for each value pair.
- 8. When completed, save the file.
- 9. Starting in the block diagram, perform the following steps to activate signal generation:
 - a) Select "Mod Gen > config... > Pulse Generator > Video/Sync Signal State > On".
 - b) Select "Modulation > config... > Pulse Modulation > State > On".
 - c) Activate RF signal generation in the "RF Frequency" block.

The R&S SMF generates an RF pulse sequence signal according to the values specified in the file.

Pulse Train Data - Pulse Generator

Opens the "File Select" dialog for selecting and creating a pulse train file, and provides access to the "File Manager".

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:CATalog? on page 545
[:SOURce<hw>]:PULM:TRAin:SELect on page 549
[:SOURce<hw>]:PULM:TRAin:DELete on page 545
```

Edit Pulse Train Data - Pulse Generator

Opens the Pulse Train Dialog.

Pulse Train Dialog

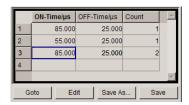
Modulation Generator, Pulse Generator and LF Output

Displays the pulse sequence as defined in the file.

"Edit"

Opens the pulse train dialog, see Edit Pulse Train Data. The dialog graphically represents the pulse train signal and provides access to the data editor.

"Zoom Position"


Sets the blue marker in the pulse train graph. The marker defines the center of any zoom in or zoom out action.

"Zoom In / Zoom Out"

Enlarges the diagram by factor 2 per "Zoom In", or scales it down accordingly when you select "Zoom Out".

Edit Pulse Train Data

Opens an editor allowing you to enter the "On-Time / OFF-Time" value pairs in a table. In addition, you can assign a repetition rate to each pair. Based on these values, the instrument then generates the pulse train signal. You can enter any number of value pairs and save your list in a file. The file name is displayed in the header of the dialog.

"ON-Time/µs" Determines the length of the respective pulse (signal is high).

Remote command:

[:SOURce<hw>]:PULM:TRAin:ONTime on page 547

"OFF-Time/µs" Determines the time length, the signal level of the pulse remains low.

Remote command:

[:SOURce<hw>]:PULM:TRAin:OFFTime on page 546

"Count"

Sets the number of repetitions for each pulse ("ON-Time/ μ s"/"OFF-Time/ μ s" value pair).

Tip: If you set "Count = 0", the corresponding value pair is ignored in the pulse sequence. With this function you can skip value pairs individually, without deleting them from the table. This allows re-enabling a value pair by entering a number unequal to zero.

Remote command:

[:SOURce<hw>]:PULM:TRAin:REPetition on page 548

"Goto" Selects row for editing.

If Goto row is selected, a window opens for entering the requested row.

(it is not possible to change individual positions of the list)

Modulation Generator, Pulse Generator and LF Output

"Edit" Opens a menu containing editing functions.

"Insert Row" Inserts a new row before the marked row.

"Insert Range" Inserts new rows before the marked row. The number of rows to be inserted can be defined in an entry window.

"Fill...." Opens a dialog for defining a set of list values to be automatically entered in the list.

The start line and the number of rows to be filled are defined under "From" and "Range".

The column to be filled is selected under "Select column to fill". Depending on the selection here, the default for start, end, and increment value are set. As the settings are interdependent, a change of one parameter may result in the automatic change of one or more of the other parameters.

The filling of the column with the selected value settings is started with button "Fill".

"Delete Row" Deletes the marked row.

"Delete Range"

Deletes the selected number of rows including the marked row. The number of rows to be inserted can be defined in an entry window.

"Save As" Opens the file dialog to save the list under a new name.

Each list is saved to the CompactFlashTM card as a separate file with the file prefix *.pulstrn. The file name and the directory to which

the file is saved are user-selectable.

"Save" The list is saved under its current name.

Import/Export - Pulse Train Mode

Expands the menu with the area for import and export of pulse train files.

Externally edited Excel tables with on/off time and repetition triplets can be imported as text files or CSV files and used for pulse train mode.

On the other hand, internally created pulse train lists can be exported as text files or CSV files.

Mode – Import/Export Pulse Train Files

Selects if pulse train lists should be imported or exported. The settings offered below depend on the selected mode.

Remote command:

[:SOURce<hw>]:PULM:TRAin:DEXChange:MODE on page 554

Attenuator

Extension - ASCII File Settings

Selects the file extension of the ASCII file to be imported or exported. Selection TXT (text file) or CSV (Excel file) is available.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:EXTension on page 551
```

Decimal Point - ASCII File Settings

Selects the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:DECimal on page 553
```

Column Separator- ASCII File Settings

Selects the separator between the frequency and level column of the ASCII table.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:COLumn on page 552
```

Select ASCII Source / Destination - Import/Export Pulse Train Files

Opens the "File Manager" for selecting the ASCII file to be imported into a pulse train list (source) or the ASCII file the pulse train list is exported (destination) in.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:CATalog? on page 551
[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SELect on page 552
```

Select Destination / Source - Import/Export Pulse Train Files

Opens the "File Manager" for selecting the pulse train list to be exported (source) into an ASCII file, or the destination for the ASCII file to be imported (destination) in.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:SELect on page 554
```

Import / Export - Import/Export Pulse Train Files

Starts the export or import of the selected file.

If import is selected, the ASCII file is imported as pulse train list.

If export is selected, the pulse train list is exported into the selected ASCII file.

Remote command:

```
[:SOURce<hw>]:PULM:TRAin:DEXChange:EXECute on page 553
```

5.7 Attenuator

The "Attenuator Settings" dialog is used to set the attenuator for the RF output. To open the "Attenuator" dialog, select "Attenuator > Configure" or use the MENU key under "Attenuator".

Attenuator

The attenuator requires option R&S SMF-B26 or R&S SMF-B27.

5.7.1 Attenuator Settings

For instruments equipped with a step attenuator, setting of the parameters is provided in the "Attenuator Settings" section.

Mode - Attenuator Settings

Sets the attenuator mode at the RF output.

"Auto" The mechanical attenuator switches in steps of 10 dB at fixed points.

"Fixed" The attenuator is fixed at the current position.

Remote command:

:OUTPut<hw>:AMODe on page 387

Attenuation - Attenuation Settings

Sets the attenuation. To enter a value in this field, the attenuator mode Fixed has to be selected. If Auto is selected, this field is read-only.

Remote command:

[:SOURce]:POWer:ATTenuation on page 529

Fixed Range in (PEP): - Attenuation Settings

Displays the level range in which the level is set without interruption for the attenuator mode Fixed setting.

Remote command:

```
:OUTPut<hw>:AFIXed:RANGe:LOWer? on page 386
:OUTPut<hw>:AFIXed:RANGe:UPPer? on page 387
```

RF OFF Mode - Attenuation Settings

Selects the mode of the mechanical attenuator, when the RF signal is switched off.

Note: This feature is only available when the instrument is equipped with one of the mechanical attenuator options, i.e. either option R&S SMF-B26 or R&S SMF-B27.

The setting of the RF OFF mode is not affected by an instrument preset (PRESET key), *RST and the "Save/Recall" function. This parameter is influenced only by the Factory Preset.

R&S SMZ Frequency Multiplier

"Normal" The current attenuation remains when the RF signal is switched off

and thus provides fast and wear-free operation.

"Attenuated" The attenuation is set to maximum when the RF signal is switched

off. This setting is recommended for applications that require a high

level of noise suppression.

Remote command:

[:SOURce<hw>]:POWer:ATTenuation:RFOFf:MODE on page 529

5.8 R&S SMZ Frequency Multiplier

By connecting an R&S SMZ Frequency Multiplier, the R&S SMF indicates a separate block. The instrument automatically detects the connected multiplier model and displays it accordingly in the block, including the frequency range. If a frequency multiplier with mechanical level control is connected, the frequency range changes to the corresponding scale-setting for the adjusting screw. The R&S SMF also changes its frequency and level display to the appropriate values of the R&S SMZxxx signal output (status bar).

For information concerning the configuration refer to the manual of your the R&S SMZ Multiplier.

R&S SMZ Frequency Multiplier

Remote Control Interfaces and Protocols

6 Remote Control Basics

This chapter provides basic information on operating an instrument via remote control.

6.1 Remote Control Interfaces and Protocols

The instrument supports different interfaces for remote control. The following table gives an overview.

Table 6-1: Remote control interfaces and protocols

Interface	Protocols, VISA*) address string	Remarks
Local Area Network (LAN)	Protocols: HiSLIP High-Speed LAN Instrument Protocol (IVI-6.1) VISA') address string: TCPIP::host address:: hislip0[::INSTR] VXI-11 VISA') address string: TCPIP::host address[:: LAN device name][::INSTR] socket communication (Raw Ethernet, simple telnet) VISA') address string: TCPIP::host address[:: LAN device name]:: <pre>SOCKET</pre>	A LAN connector is located on the front or rear panel of the instrument, or both. The interface is based on TCP/IP and supports various protocols. For a description of the protocols refer to: Chapter 6.1.3.1, "HiSLIP Protocol", on page 313 Chapter 6.1.3.2, "VXI-11 Protocol", on page 313 Chapter 6.1.3.3, "Socket Communication", on page 313
Serial Interface	VISA*) address string: ASRL[0-9][::INSTR]	For a description of the interface refer to Chapter 6.1.5, "Serial Interface", on page 315.
GPIB (IEC/IEEE Bus Interface)	VISA*) address string: GPIB::primary address[::INSTR] (no secondary address)	Optional GPIB bus interfaces according to standard IEC 625.1/ IEEE 488.1 are located on the rear panel of the instrument. For a description of the interface refer to Chapter 6.1.6, "GPIB Interface (IEC/IEEE Bus Interface)", on page 316. Note: Within this interface description, the term GPIB is used as a synonym for the IEC/IEEE bus interface.

[&]quot;) VISA is a standardized software interface library providing input and output functions to communicate with instruments. A VISA installation on the controller is a prerequisite for remote control over LAN (when using VXI-11 or HiSLIP protocol), USB and serial interface. For remote control via socket communication VISA installation is optional. For more information, see Chapter 6.1.1, "VISA Libraries", on page 310.

Rohde & Schwarz provides the standardized I/O software library R&S VISA for communication via TCP/IP (LAN: HiSlip, VXI-11 and raw socket), USB (USBTMC) or serial interfaces.

R&S VISA is available for download at the Rohde & Schwarz website http://www.rohde-schwarz.com/rsvisa.

How to configure the remote control interfaces, see Chapter 6.2, "Starting a Remote Control Session", on page 318.

Remote Control Interfaces and Protocols

SCPI (Standard Commands for Programmable Instruments)

SCPI commands - messages - are used for remote control. Commands that are not taken from the SCPI standard follow the SCPI syntax rules. The instrument supports the SCPI version 1999. The SCPI standard is based on standard IEEE 488.2 and aims at the standardization of device-specific commands, error handling and the status registers. The tutorial "Automatic Measurement Control - A tutorial on SCPI and IEEE 488.2" from John M. Pieper (R&S order number 0002.3536.00) offers detailed information on concepts and definitions of SCPI.

Tables provide a fast overview of the bit assignment in the status registers. The tables are supplemented by a comprehensive description of the status registers.

6.1.1 VISA Libraries

VISA is a standardized software interface library providing input and output functions to communicate with instruments. Thus, you can configure the interface without having to adjust the application program to the used interface. The I/O channel (LAN or TCP/IP, USB, GPIB,...) is selected at initialization time by means of the channel–specific address string ("VISA resource string"), or by an appropriately defined VISA alias (short name). See also Chapter 6.1, "Remote Control Interfaces and Protocols", on page 309 for an overview.

Instrument access via VXI-11 or HiSLIP protocols is achieved from high level programming platforms using VISA as an intermediate abstraction layer. VISA encapsulates the low-level VXI or GPIB function calls and thus makes the transport interface transparent for the user.

A VISA installation is a prerequisite for remote control using the following interfaces:

- LAN Interface using Chapter 6.1.3, "LAN Interface", on page 311
- LAN interface using Chapter 6.1.3.2, "VXI-11 Protocol", on page 313
- Chapter 6.1.4, "USB Interface", on page 314
- Chapter 6.1.6, "GPIB Interface (IEC/IEEE Bus Interface)", on page 316
- Chapter 6.1.5, "Serial Interface", on page 315

Instrument access via the LAN socket protocol or GPIB connections can be operated both, with or without the VISA library.

See also Chapter 6.1.3.3, "Socket Communication", on page 313 and Chapter 6.1.6, "GPIB Interface (IEC/IEEE Bus Interface)", on page 316.

For more information about VISA refer to the user documentation.

6.1.2 Messages

The messages transferred on the data lines are divided into the following categories:

Interface messages
 Interface messages are transmitted to the instrument on the data lines, with the attention line being active (LOW). They are used to communicate between the con

Remote Control Interfaces and Protocols

troller and the instrument. Interface messages can only be sent by instruments that have GPIB bus functionality. For details see the sections for the required interface.

Instrument messages

Instrument messages are employed in the same way for all interfaces, if not indicated otherwise in the description. Structure and syntax of the instrument messages are described in Chapter 6.3, "SCPI Command Structure", on page 332. A detailed description of all messages available for the instrument is provided in the chapter "Remote Control Commands".

There are different types of instrument messages, depending on the direction they are sent:

- Commands
- Instrument responses

Commands

Commands (program messages) are messages the controller sends to the instrument. They operate the instrument functions and request information. The commands are subdivided according to two criteria:

- According to the effect they have on the instrument:
 - Setting commands cause instrument settings such as a reset of the instrument or setting the frequency.
 - Queries cause data to be provided for remote control, e.g. for identification of the instrument or polling a parameter value. Queries are formed by directly appending a question mark to the command header.
- According to their definition in standards:
 - Common commands: their function and syntax are precisely defined in standard IEEE 488.2. They are employed identically on all instruments (if implemented). They refer to functions such as management of the standardized status registers, reset and self-test.
 - Instrument control commands refer to functions depending on the features of
 the instrument such as frequency settings. Many of these commands have also
 been standardized by the SCPI committee. These commands are marked as
 "SCPI confirmed" in the command reference chapters. Commands without this
 SCPI label are device-specific; however, their syntax follows SCPI rules as permitted by the standard.

Instrument responses

Instrument responses (response messages and service requests) are messages the instrument sends to the controller after a query. They can contain measurement results, instrument settings and information on the instrument status.

6.1.3 LAN Interface

To be integrated in a LAN, the instrument is equipped with a LAN interface, consisting of a connector, a network interface card and protocols. For remote control via a network, the PC and the instrument must be connected via the LAN interface to a common network with TCP/IP network protocol. They are connected using a commercial

Remote Control Interfaces and Protocols

RJ45 cable. The TCP/IP network protocol and the associated network services are preconfigured on the instrument. Software for instrument control and (for specified protocols only) the VISA program library must be installed on the controller.

VISA library

Instrument access via VXI-11 or HiSLIP protocols is usually achieved from high level programming platforms using VISA as an intermediate abstraction layer. VISA encapsulates the low level VXI or GPIB function calls and thus makes the transport interface transparent for the user. See Chapter 6.1.1, "VISA Libraries", on page 310 for details.

IP address

Only the IP address or the computer name (LAN device name) is required to set up the connection. The IP address/computer name is part of the "visa resource string" used by the programs to identify and control the instrument.

Forms of the VISA resource string:

```
TCPIP::host address[::LAN device name][::INSTR]
or
TCPIP::host address::port::SOCKET
```

where

- TCPIP designates the network protocol used
- host address is the IP address or host name of the device
- LAN device name defines the protocol and the instance number of a sub-instrument:
 - inst0 selects the VXI-11 protocol (optional, default)
 - hislip0 selects the newer HiSLIP protocol
- INSTR indicates the instrument resource class (optional)
- port determines the used port number
- SOCKET indicates the raw network socket resource class

Example:

 Instrument has the IP address 192.1.2.3; the valid resource string using VXI-11 protocol is:

```
TCPIP::192.1.2.3::INSTR
```

The DNS host name name is *RSSM1*; the valid resource string is:

```
TCPIP::RSSM1::hislip0 (HiSLIP)
TCPIP::RSSM1::INSTR (VXI-11)
```

A raw socket connection can be established using:

```
TCPIP::192.1.2.3::5025::SOCKET
```

Remote Control Interfaces and Protocols

Identifying instruments in a network

If several instruments are connected to the network, each instrument has its own IP address and associated resource string. The controller identifies these instruments by the resource string.

6.1.3.1 HiSLIP Protocol

The HiSLIP (**High Speed LAN Instrument Protocol**) is the successor protocol for VXI-11 for TCP-based instruments specified by the IVI foundation. The protocol uses two TCP sockets for a single connection - one for fast data transfer, the other for non-sequential control commands (e.g. Device Clear or SRQ).

HiSLIP has the following characteristics:

- High performance as with raw socket network connections
- Compatible IEEE 488.2 support for Message Exchange Protocol, Device Clear, Serial Poll, Remote/Local, Trigger, and Service Request
- Uses a single IANA registered port (4880), which simplifies the configuration of firewalls
- Supports simultaneous access of multiple users by providing versatile locking mechanisms
- Usable for IPv6 or IPv4 networks

Using VXI-11, each operation is blocked until a VXI-11 device handshake returns. However, using HiSLIP, data is sent to the device using the "fire and forget" method with immediate return. Thus, a successful return of a VISA operation such as <code>viWrite()</code> does not guarantee that the instrument has finished or started the requested command, but is delivered to the TCP/IP buffers.

For more information see also the application note: 1MA208: Fast Remote Instrument Control with HiSLIP.

6.1.3.2 VXI-11 Protocol

The VXI-11 standard is based on the ONC RPC (Open Network Computing Remote Procedure Call) protocol which in turn relies on TCP/IP as the network/transport layer. The TCP/IP network protocol and the associated network services are preconfigured. TCP/IP ensures connection-oriented communication, where the order of the exchanged messages is adhered to and interrupted links are identified. With this protocol, messages cannot be lost.

6.1.3.3 Socket Communication

An alternative way for remote control of the software is to establish a simple network communication using sockets. The socket communication, also referred to as "Raw

Remote Control Interfaces and Protocols

Ethernet communication", does not necessarily require a VISA installation on the remote controller side. It is available by default on all operating systems.

The simplest way to establish socket communication is to use the built-in telnet program. The telnet program is part of every operating system and supports a communication with the software on a command-by-command basis. For more convenience and to enable automation by means of programs, user-defined sockets can be programmed.

Socket connections are established on a specially defined port. The socket address is a combination of the IP address or the host name of the instrument and the number of the port configured for remote-control. All R&S SMF use port number 5025 for this purpose. The port is configured for communication on a command-to-command basis and for remote control from a program.

6.1.3.4 LAN Interface Messages

In the LAN connection, the interface messages are called low–level control messages. These messages can be used to emulate interface messages of the GPIB bus.

Command	Long term	Effect on the instrument
&ABO	Abort	Aborts processing of the commands just received.
&DCL	Device Clear	Aborts processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument setting.
>L	Go to Local	Transition to the "local" state (manual control). (The instrument automatically returns to remote state when a remote command is sent UNLESS &NREN was sent before.)
>R	Go to Remote	Enables automatic transition from local state to remote state by a subsequent remote command (after &NREN was sent).
&GET	Group Execute Trigger	Triggers a previously active instrument function (e.g. a sweep). The effect of the command is the same as with that of a pulse at the external trigger signal input.
&LLO	Local Lockout	Disables transition from remote control to manual control by means of the front panel keys.
&NREN	Not Remote Enable	Disables automatic transition from local state to remote state by a subsequent remote command. (To re-activate automatic transition use >R.)
&POL	Serial Poll	Starts a serial poll.

6.1.4 USB Interface

For remote control via the USB connection, the PC and the instrument must be connected via the USB type B interface. A USB connection requires the VISA library to be installed. VISA detects and configures the R&S instrument automatically when the

Remote Control Interfaces and Protocols

USB connection is established. You do not have to enter an address string or install a separate driver.

USB address

The used USB address string is:

```
USB::<vendor ID>:::cproduct ID>::<serial number>[::INSTR]
```

where:

- <vendor ID> is the vendor ID for Rohde&Schwarz
- product ID> is the product ID for the R&S instrument
- <serial number> is the individual serial number on the rear of the instrument

Example:

```
USB::0x0AAD::0x0047::100001::INSTR
```

0x0AAD is the vendor ID for Rohde&Schwarz

0x0047 is the product ID for the R&S SMF

100001 is the serial number of the particular instrument

6.1.5 Serial Interface

Remote control via the serial interface is possible either via RS232 interface or via a Bluetooth connection. The controller/Bluetooth device and the instrument must be connected via an external USB/serial-adapter (see recommended extras, data sheet) and a serial crossover (null modem) cable. A USB connection requires the VISA library to be installed on the controller. VISA will detect and configure the R&S SMF automatically when the USB connection is established.

Serial address

The used serial address string is:

```
ASRL[0-9][::INSTR]
```

where ASRL [0-9] determines the number of the COM port on the controller side, that has to be used for the serial connection.

Access via a bluetooth device requires the entry of the bluetooth pin in addition (see Chapter 5.2.3.19, "Security", on page 128).

To enable an error-free and correct data transmission, the parameters of the generator and the controller must have the same setting. The serial interface is preset for a baud rate 115200, no parity and one stop bit. The parameters can be manually changed in "Remote Channel Settings" dialog (see Chapter 5.2.3.15, "Remote Channel Settings", on page 123).

Remote Control Interfaces and Protocols

6.1.6 GPIB Interface (IEC/IEEE Bus Interface)

To be able to control the instrument via the GPIB bus, the instrument and the controller must be linked by a GPIB bus cable. A GPIB bus card, the card drivers and the program libraries for the programming language used must be provided in the controller. The controller must address the instrument with the GPIB bus address (see Chapter 6.1.6.2, "GPIB Instrument Address", on page 317).

Characteristics

The GPIB interface is described by the following characteristics:

- Up to 15 instruments can be connected
- The total cable length is restricted to a maximum of 15 m; the cable length between two instruments should not exceed 2m.
- A wired "OR"-connection is used if several instruments are connected in parallel, since the slowest instrument determines the speed.

Any connected IEC bus cable must be terminated by an instrument or controller.

6.1.6.1 **GPIB Interface Messages**

Interface messages are transmitted to the instrument on the data lines, with the attention line (ATN) being active (LOW). They are used for communication between the controller and the instrument and can only be sent by a computer which has the function of a GPIB bus controller. GPIB interface messages can be further subdivided into:

- Universal commands: act on all instruments connected to the GPIB bus without previous addressing
- Addressed commands: only act on instruments previously addressed as listeners

Universal Commands

Universal commands are encoded in the range 10 through 1F hex. They affect all instruments connected to the bus and do not require addressing.

Command	Effect on the instrument
DCL (Device Clear)	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument settings.
IFC (Interface Clear) *)	Resets the interfaces to the default setting.
LLO (Local Lockout)	The LOC/IEC ADDR key is disabled.
SPE (Serial Poll Enable)	Ready for serial poll.
SPD (Serial Poll Disable)	End of serial poll.

Remote Control Interfaces and Protocols

Command	Effect on the instrument
PPU (Parallel Poll Unconfigure)	End of the parallel-poll state.
*) IEC is not a real universal command, it is sent via a separate line; however, it also affects all instruments	

^{*)} IFC is not a real universal command, it is sent via a separate line; however, it also affects all instruments connected to the bus and does not require addressing

Addressed Commands

Addressed commands are encoded in the range 00 through 0F hex. They only affect instruments addressed as listeners.

Command	Effect on the instrument
GET (Group Execute Trigger)	Triggers a previously active instrument function (e.g. a sweep). The effect of the command is the same as with that of a pulse at the external trigger signal input.
GTL (Go to Local)	Transition to the "local" state (manual control).
GTR (Go to Remote)	Transition to the "remote" state (remote control).
PPC (Parallel Poll Configure)	Configures the instrument for parallel poll.
SDC (Selected Device Clear)	Aborts the processing of the commands just received and sets the command processing software to a defined initial state. Does not change the instrument setting.

6.1.6.2 **GPIB Instrument Address**

In order to operate the instrument via remote control, it must be addressed using the GPIB address. The remote control address is factory preset, but it can be changed if it does not fit in the network environment. For remote control, addresses 0 through 30 are allowed. The GPIB address is maintained after a reset of the instrument settings.

Changing the GPIB address of the instrument

The GPIB address can be changed manually or using a remote control command.

1. Manually: press the SETUP key and select "Remote > GPIB".

Select parameter "GPIB channel address" and set the GPIB address.

2. Using remote control command:

SYST:COMM:GPIB:ADDR 18

Starting a Remote Control Session

6.2 Starting a Remote Control Session

The instrument and the controller have to be connected with the suitable cable and switched on.

A remote control program must open a connection to the instrument (using VISA functionality), before it can send commands to and receive device responses from the instrument.

Instrument Address

In order to operate the instrument via remote control it must be addressed using the defined interface address. See Chapter 6.1.3, "LAN Interface", on page 311, Chapter 6.1.4, "USB Interface", on page 314, Chapter 6.1.5, "Serial Interface", on page 315or Chapter 6.1.6, "GPIB Interface (IEC/IEEE Bus Interface)", on page 316 for details.

The VISA resource strings are indicated in the "Setup > Remote Channel Settings" menu.

Securing the display

To prevent unauthorized personnel from reading the display, you can disable the frequency and level display explicitly. This is useful when you remotely control the instrument from a different location.

For information on how to disable the frequency and level display, refer to "Annotation Frequency" on page 132 and "Annotation Amplitude" on page 132.

Refer to Chapter 6.2.3, "Examples", on page 319 for practical examples on setting up of a remote control link and starting of a remote control session.

6.2.1 Switching to Remote Control

After switching on, the instrument is usually in the local state and can be operated via the front panel controls (for instruments equipped with a display), a mouse and an external keyboard.

Starting remote control

1. Send a command from a controller to the instrument.

The instrument changes to remote state as soon as it receives the command from the controller.

Note: If you have sent &NREN before, the automatic transition from local state to manual control by a subsequent remote command is disabled (use >R to enable it again).

In remote state, operation via the front panel or via mouse and keyboard is disabled. The status line indicates the "REMOTE" state.

Starting a Remote Control Session

The instrument remains in the remote state until it is reset to the local state, see Chapter 6.2.2, "Returning to Manual Operation", on page 319).

Tip: Switching from manual operation to remote control and vice versa does not affect the other instrument settings.

- 2. Although operation via front panel, mouse and keyboard is disabled, the dialog boxes can still be opened, for example to verify settings. The buttons and setting fields are grayed out and cannot be activated.
 - Additionally, you can disable the access to the dialogs with the command SYST: KLOC ON to protect the instrument against unauthorized readings.
- 3. To prevent unintentional return to manual operation, disable the LOCAL key of the instrument with the &LLO command (see Chapter 6.1.3.4, "LAN Interface Messages", on page 314).

The instrument switches to "REM-LLO" state.

The automatic transition from local state to remote state by a subsequent remote command, and the command *GTL are disabled.

To return to manual mode is only possible via remote control.

4. Unlock the LOCAL key with >R.

6.2.2 Returning to Manual Operation

Before returning to manual control, command processing must be completed. Otherwise, the instrument switches back to remote control immediately.

To return to manual operation, perform one of the following:

- Press the LOCAL key on the front panel.
- Select "Setup > Remote Control Channels > Local".
- While using the socket communication, terminate the remote control session.
- Send the interface command >L via the remote control interface.

Use the >R to enable the LOCAL key if it is locked.

6.2.3 Examples

This sections provides examples for setting up the remote control connection, and starting a remote control session.

This section assumes basic knowledge of programming and operation of the controller. A description of the interface commands can be obtained from the corresponding manuals.

Starting a Remote Control Session

6.2.3.1 Remote Control over GPIB

The program example in this section is written in VISUAL BASIC. A condition for programming in VISUAL BASIC is that the modules NIGLOBAL (Niglobal.bas) and VBIB32 (Vbib 32.bas) are added to the projects.

Drivers for instrument, e.g. IVI-COM and LabVIEW drivers, are available in the download area of the product website (http://www.rohde-schwarz.com/en/products/test_and_measurement/product_categories/signal_generation/).

Starting a remote control session over GPIB

As a prerequisite, the GPIB address of the instrument, which is factory-set to 28, must not have been changed.

- 1. Connect instrument and controller using GPIB cable and switch them on.
- 2. Execute following commands on the controller:
 - a) Open port to the instrument CALL IBFIND("DEV1", generator%)
 - b) Inform controller about instrument address CALL IBPAD (generator%, 28)
 - c) Reset instrument CALL IBWRT (generator%, "*RST; *CLS")
 - d) Set instrument to new address CALL IBWRT (generator*, "SYST:COMM:GPIB:ADDR 18")
 - e) Inform controller about new address CALL IBPAD (generator%, 18)

The GPIB address of the instrument is changed.

3. To return to manual operation sent CALL IBLOC (generator%) or press the LOCAL key at the front panel.

6.2.3.2 Remote Control over LAN using VXI-11 Protocol

In this example, the I/O software library R&S VISA from Rohde & Schwarz is used to set up a LAN remote control link and remotely control the R&S SMF. R&S VISA is running on a controller PC with Windows operating system. When the connection is set up you can send commands to the instrument, and receive the responses.

The remote control connection requires a VISA installation but no additional hardware on the controller PC. The LAN I/O channel is selected at initialization time using the VISA resource string (also referred to as "address string"). A VISA alias (short name) is used to replace the complete resource string. The host address is either the R&S SMF's hostname or IP address. See also Chapter 6.1.3, "LAN Interface", on page 311.

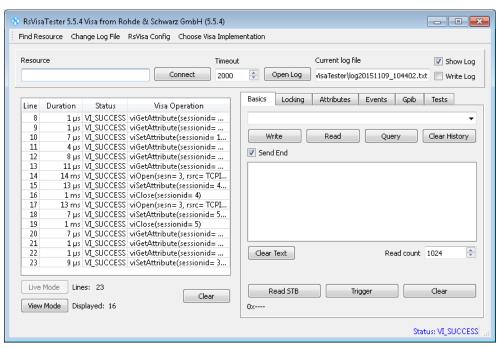
Starting a Remote Control Session

In this example, it is assumed that:

A LAN remote control link between the controller and the R&S SMF is already set up.

The R&S VISA program is installed on the remote PC, see "http://www.rohde-schwarz.com/rsvisa > RS VISA Release Notes".

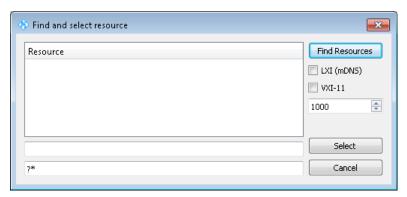
Configuring the controller


To remote control the R&S SMF, we use the R&S VISA Tester application.

The instrument is preconfigured for networks using DHCP (dynamic host configuration protocol). If this configuration is used, enter the computer name in the position of the IP address.

To enable the external controller to communicate with the R&S SMF via TCP/IP protocol, set up a remote control link as follows:

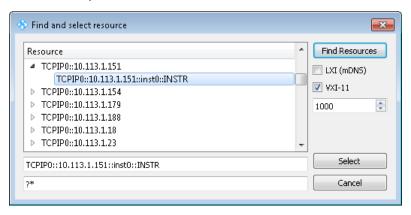
- Make sure that the controller and the instrument are connected in the network (network cable) and switched on.
- On the controller, start "R&S VISA > Tester 32bit" or "R&S VISA > Tester 64bit", respectively.



3. In the menu bar, select "Choose VISA Implementation > Rohde & Schwarz Visa".

Starting a Remote Control Session

- 4. Select "Rohde & Schwarz Visa" and confirm with "OK".
- 5. In the menu bar, select "Find Resource" to search for the instrument in the LAN.



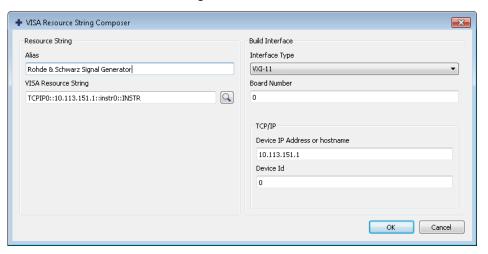
6. Select "VXI-11" and "Find Resources".

R&S VISA scans the network for connected instruments and lists all detected instuments in the "Resource" list.

Note: The search may take some time, particularly in large networks.

7. Select the required instrument and confirm with "Select".

The "Find and select resource" dialog closes and R&S VISA indicates the instruments IP address in the "Resource" field of the main application window.


8. As an alternative to the IP address, you can assign an alias name to the R&S SMF:

Starting a Remote Control Session

a) In the menu bar, select "RsVisaConfig".

- b) In the toolbar, select "+" to access the "VISA Rexource String Composer".
- c) Fill in the "Alias" name, the "VISA Resource String" and the "Device IP Address or host name" as shown in the figure, and confirm with "OK".

The "Alias" name is assigned to the instrument.

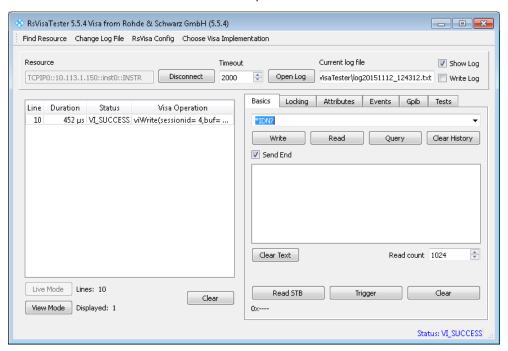
- d) Close the dialog. The R&S SMF is now registered in the program and can be addressed via the resource string or alias name.
- 9. In the main window, select "Connect".
 - R&S VISA establishes the connection to the R&S SMF.

Now you can send settings to configure the instrument and receive its responses.

Starting a Remote Control Session

Note: If the connection cannot be set up, R&S VISA displays an error in the log view. For information on how to proceed when network failures occur, see Chapter 9.5, "Resolving Network Connection Failures", on page 611.

For further information on the functions to read and write to an open session, as well as the utility applications the software provides, see the R&S VISA User Manual.


Starting a remote control over LAN (using VXI-11)

To set the instrument to remote control, you can use the addressed command >R, or send any command from the controller.

- 1. Start the R&S VISA Tester and establish the connection to the R&S SMF, see "Configuring the controller" on page 321.
- 2. In the R&S VISA "Basics" tab, enter a SCPI command, e.g. "*IDN?" and confirm with "Query".

The instrument is switched to remote control when it receives a command from the controller.

3. Select "Read" to obtain the instrument response.

Tip: If the "Show Log" checkbox is checked R&S VISA displays each VISA function call in the log-view on the left. If you check the "Write Log" checkbox the log-view entry is written to the log file as well. You can operate the log-view in two modes: the "Live Mode" shows only the most recent messages whereas the "View Mode" allows you to scroll the history.

4. To set, e.g. the frequency, enter SOUR1: FREQ 4 GHz and select "Write". To check the performed setting, SOUR1: FREQ? and select "Read".

Starting a Remote Control Session

The instrument response is 4000000000, i.e. the frequency is returned in Hz.

While remote control is active, the "Remote" icon in the status bar indicates that the instrument is in remote control mode. The operation via the front panel or via mouse and keyboard are locked, allowing a remote control program to be performed without interruption.

On the display, keys and entry fields are grayed out and cannot be activated or modified, but you can still open dialogs, for example to verify settings.

- 5. To disable the access to the dialogs, use the command SYST: KLOC ON.
- To prevent unintentional return to manual operation, use the command &LLO.
 See also Chapter 6.1.3.4, "LAN Interface Messages", on page 314.
 The instrument switches to "Remote LLO" state. The LOCAL key is disabled.
- 7. To enable the LOCAL key, use the command >R.
- 8. To return to manual operation, see Chapter 6.2.2, "Returning to Manual Operation", on page 319.

Tip: Switching from manual operation to remote control and vice versa does not affect the other instrument settings.

6.2.3.3 Remote Control over LAN using Socket Communication

This chapter provides an example on how to establish a remote control connection over telnet protocol and a simple sockets-based program example that can be further developed.

Setting up a Telnet Connection

To control the software, only a telnet program is required. The telnet program is part of every operating system.

- 1. To establish a Telnet connection with the R&S SMF, start the telnet program.
- 2. Enter the access string to connect to the instrument and confirm with ENTER. The access string is composed of the open command short form) and the socket address. The socket address is a combination of the IP address or the host name of the R&S SMF and the number of the port configured for remote-control via telnet. The R&S SMF uses the port number 5025 for remote connection via Telnet. Example: o 10.113.1.150 5025

Starting a Remote Control Session

```
Telnet 10.113.1.150

Welcome to Microsoft Telnet Client

Escape Character is 'CTRL++'

Microsoft Telnet > 0 10.113.1.150 5025

Connecting To 10.113.1.150..._
```

The connection to the instrument is set up and you can send remote-control commands.

3. Even if the cursor is not visible on the screen, enter blind a remote-control command and confirm with "Enter".

```
Telnet 10.113.1.150
```

Starting a Remote Control Session

After the first remote-control command has been sent, the instrument is in the "REMOTE" state, i.e. instrument control from the front panel or via mouse and keyboard is disabled and "REMOTE" is displayed in the status line.

Telnet program examples

The following program example shows a simple TcpClient class that is intended to explain on how to get started with programming of sockets.

The example sets up a socket communication to R&S SMF and opens a simple user interface, very similar to the telnet, which allows input of commands. To enable real automation, further development of the program is required.

TcpClient.h

```
#include <string>
//defines structs for socket handling
#include <netinet/in.h>
using namespace std;
typedef struct sockaddr in SockAddrStruct;
typedef struct hostent HostInfoStruct;
class TcpClient
 public:
   TcpClient();
   ~TcpClient();
   void connectToServer( string &hostname, int port );
   void disconnect();
   void transmit( string &txString );
   void receive( string &rxString );
   string getCurrentHostName() const;
   int getCurrentPort() const;
  private:
   string
                  currentHostName;
                  currentPort;
```

Starting a Remote Control Session

TcpClient.cpp

```
#include <string>
//defines structs for socket handling
#include <netinet/in.h>
using namespace std;
typedef struct sockaddr_in SockAddrStruct;
typedef struct hostent HostInfoStruct;
class TcpClient
 public:
   TcpClient();
   ~TcpClient();
   void connectToServer( string &hostname, int port );
   void disconnect();
   void transmit( string &txString );
   void receive( string &rxString );
   string getCurrentHostName() const;
   int getCurrentPort() const;
  private:
   string
                   currentHostName;
                   currentPort;
                    currentSocketDescr;
   SockAddrStruct serverAddress;
   HostInfoStruct * currentHostInfo;
                   clientIsConnected;
   int
                    receiveBufferSize;
};
#include <netdb.h>
#include <netinet/in.h>
#include <unistd.h>
#include "TcpClient.h"
TcpClient::TcpClient()
: currentHostName( "" )
, currentPort( 0 )
, currentSocketDescr( 0 )
, serverAddress ( )
, currentHostInfo( NULL )
, clientIsConnected( false )
, receiveBufferSize( 1024 )
```

Starting a Remote Control Session

```
TcpClient::~TcpClient()
 currentHostInfo = NULL;
void TcpClient::connectToServer( string &hostname, int port )
 currentHostInfo = gethostbyname( hostname.c str());
  if( currentHostInfo == NULL )
   currentHostName = "";
   currentPort
                    = 0;
   currentHostInfo = NULL;
   clientIsConnected = false;
   printf("error connecting host\n" );
  currentHostName = hostname;
  currentPort = port;
  currentSocketDescr = socket(AF INET, SOCK STREAM, 0);
  if( currentSocketDescr == 0 )
   currentHostName = "";
   currentPort
                     = 0;
   currentHostInfo = NULL;
   clientIsConnected = false;
   printf("can't create socket\n" );
  serverAddress.sin_family = currentHostInfo->h_addrtype;
  serverAddress.sin_port = htons( currentPort );
  memcpy( (char *) &serverAddress.sin addr.s addr,
  \verb|currentHostInfo->h_addr_list[0]|, | \verb|currentHostInfo->h_length||);
  if( connect( currentSocketDescr, ( struct sockaddr *) &serverAddress,
  sizeof(serverAddress)) < 0)
  throw string("can't connect server\n");
  clientIsConnected = true;
void TcpClient::disconnect()
  if( clientIsConnected )
   close( currentSocketDescr );
  currentSocketDescr = 0;
 currentHostName = "";
 currentPort
                  = 0;
  currentHostInfo = NULL;
  clientIsConnected = false;
```

Starting a Remote Control Session

```
void TcpClient::transmit( string &txString )
  if( !clientIsConnected )
  throw string("connection must be established before any data can be sent\n");
  char * transmitBuffer = new char[txString.length() +1];
 memcpy( transmitBuffer, txString.c str(), txString.length() );
  transmitBuffer[txString.length()] = '\n'; //newline is needed!
  if( send( currentSocketDescr, transmitBuffer, txString.length() + 1, 0 ) < 0 )
   throw string("can't transmit data\n");
  delete [] transmitBuffer;
}
void TcpClient::receive( string &rxString )
{
  if( !clientIsConnected )
  throw string("connection must be established before any data can be received\n");
  char * receiveBuffer = new char[receiveBufferSize];
  memset( receiveBuffer, 0, receiveBufferSize );
 bool receiving = true;
 while( receiving )
   int receivedByteCount = recv( currentSocketDescr,
   receiveBuffer, receiveBufferSize, 0 );
   if( receivedByteCount < 0 )</pre>
     throw string ("error while receiving data\n");
   rxString += string( receiveBuffer );
   receiving = ( receivedByteCount == receiveBufferSize );
  delete [] receiveBuffer;
string TcpClient::getCurrentHostName() const
 return currentHostName;
int TcpClient::getCurrentPort() const
  return currentPort;
```

TelnetClient.cpp

```
#include <iostream>
#include "TcpClient.h"
```

Starting a Remote Control Session

```
void printUsage()
 cout<<"usage: EthernetRawCommand <server-ip> [scpi-command]"<<endl;</pre>
int main( int argc, char *argv[] )
{
 int errorCode
                  = 0; //no error
 bool useSingleCommand = false;
 string singleCommand = "";
 string hostname
 int port
                     = 5025;
                     = "";
 string input
 TcpClient client;
 switch( argc )
   case 3:
     useSingleCommand = true;
    singleCommand = argv[2];
   case 2:
     hostname
                    = argv[1];
     break;
   default:
      printUsage();
      return(-1);
  }
 try
   client.connectToServer( hostname, port );
   bool terminate = false;
   while( !terminate )
     char buffer[1024];
     if( useSingleCommand )
       input = singleCommand; //send string
     else
      cin.getline( buffer, 1024 );
      input = buffer;
       if( input == "end" )
         terminate = true;
     if( !terminate)
       client.transmit( input ); //send string
       int qPos = input.find( "?", 0 );
       //receive string only when needed
```

SCPI Command Structure

```
if( qPos > 0 )
{
    string rcStr = "";
    client.receive( rcStr );
    cout << rcStr << endl;
}
if( useSingleCommand )
{
    terminate = true;
}
}
}catch( const string errorString )
{
    cout<<errorString<endl;
}
client.disconnect();
return errorCode;</pre>
```

6.3 SCPI Command Structure

SCPI commands consist of a so-called header and, in most cases, one or more parameters. The header and the parameters are separated by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). The headers may consist of several mnemonics (keywords). Queries are formed by appending a question mark directly to the header.

The commands can be either device-specific or device-independent (common commands). Common and device-specific commands differ in their syntax.

6.3.1 Syntax for Common Commands

Common (=device-independent) commands consist of a header preceded by an asterisk (*) and possibly one or more parameters.

Examples:

*RST	RESET	Resets the instrument.
*ESE	EVENT STATUS ENABLE	Sets the bits of the event status enable registers.
*ESR?	EVENT STATUS QUERY	Queries the contents of the event status register.
*IDN?	IDENTIFICATION QUERY	Queries the instrument identification string.

SCPI Command Structure

6.3.2 Syntax for Device-Specific Commands

Not all commands used in the following examples are necessarily implemented in the instrument.

For demonstration purposes only, assume the existence of the following commands for this section:

- DISPlay[:WINDow<1...4>]:MAXimize <Boolean>
- FORMat:READings:DATA <type>[, <length>]
- HCOPy:DEVice:COLor <Boolean>
- HCOPy:DEVice:CMAP:COLor:RGB <red>, <green>, <blue>
- HCOPy[:IMMediate]
- HCOPy: ITEM: ALL
- HCOPy:ITEM:LABel <string>
- HCOPy:PAGE:DIMensions:QUADrant[<N>]
- HCOPy:PAGE:ORIentation LANDscape | PORTrait
- HCOPy:PAGE:SCALe <numeric value>
- MMEMory:COPY <file source>,<file destination>
- SENSE:BANDwidth|BWIDth[:RESolution] <numeric_value>
- SENSe:FREQuency:STOP < numeric value>
- SENSe:LIST:FREQuency <numeric_value>{, <numeric value>}

Long and short form

The mnemonics feature a long form and a short form. The short form is marked by upper case letters, the long form corresponds to the complete word. Either the short form or the long form can be entered; other abbreviations are not permitted.

Example:

HCOPy: DEVice: COLor ON is equivalent to HCOP: DEV: COL ON.

Case-insensitivity

Upper case and lower case notation only serves to distinguish the two forms in the manual, the instrument itself is case-insensitive.

Numeric suffixes

If a command can be applied to multiple instances of an object, e.g. specific channels or sources, the required instances can be specified by a suffix added to the command. Numeric suffixes are indicated by angular brackets (<1...4>, <n>, <i>) and are replaced by a single value in the command. Entries without a suffix are interpreted as having the suffix 1.

SCPI Command Structure

Example:

Definition: HCOPy: PAGE: DIMensions: QUADrant [<N>]

Command: HCOP: PAGE: DIM: QUAD2

This command refers to the quadrant 2.

Different numbering in remote control

For remote control, the suffix may differ from the number of the corresponding selection used in manual operation. SCPI prescribes that suffix counting starts with 1. Suffix 1 is the default state and used when no specific suffix is specified.

Some standards define a fixed numbering, starting with 0. If the numbering differs in manual operation and remote control, it is indicated for the corresponding command.

Optional mnemonics

Some command systems permit certain mnemonics to be inserted into the header or omitted. These mnemonics are marked by square brackets in the description. The instrument must recognize the long command to comply with the SCPI standard. Some commands are considerably shortened by these optional mnemonics.

Example:

Definition: HCOPy[:IMMediate]

Command: HCOP: IMM is equivalent to HCOP

Optional mnemonics with numeric suffixes

Do not omit an optional mnemonic if it includes a numeric suffix that is relevant for the effect of the command.

Example:

Definition:DISPlay[:WINDow<1...4>]:MAXimize <Boolean>

Command: DISP: MAX ON refers to window 1.

In order to refer to a window other than 1, you must include the optional WINDow parameter with the suffix for the required window.

DISP: WIND2: MAX ON refers to window 2.

Parameters

Parameters must be separated from the header by a "white space". If several parameters are specified in a command, they are separated by a comma (,). For a description of the parameter types, refer to Chapter 6.3.3, "SCPI Parameters", on page 335.

Example:

Definition:HCOPy:DEVice:CMAP:COLor:RGB <red>, <green>, <blue>

Command: HCOP: DEV: CMAP: COL: RGB 3,32,44

SCPI Command Structure

Special characters

Parameters

A vertical stroke in parameter definitions indicates alternative possibilities in the sense of "or". The effect of the command differs, depending on which parameter is used.

Example:

Definition:HCOPy:PAGE:ORIentation LANDscape | PORTrait
Command HCOP:PAGE:ORI LAND specifies landscape orientation
Command HCOP:PAGE:ORI PORT specifies portrait orientation

Mnemonics

A selection of mnemonics with an identical effect exists for several commands. These mnemonics are indicated in the same line; they are separated by a vertical stroke. Only one of these mnemonics needs to be included in the header of the command. The effect of the command is independent of which of the mnemonics is used.

Example:

DefinitionSENSE:BANDwidth|BWIDth[:RESolution] <numeric value>

The two following commands with identical meaning can be created:

SENS:BAND:RES 1 SENS:BWID:RES 1

[] Mnemonics in square brackets are optional and may be inserted into the header or omitted.

Example: HCOPy[:IMMediate]
HCOP:IMM is equivalent to HCOP

{} Parameters in curly brackets are optional and can be inserted once or several times, or omitted.

Example: SENSe:LIST:FREQuency <numeric_value>{, <numeric_value>}

The following are valid commands:

SENS:LIST:FREQ 10 SENS:LIST:FREQ 10,20 SENS:LIST:FREQ 10,20,30,40

6.3.3 SCPI Parameters

Many commands are supplemented by a parameter or a list of parameters. The parameters must be separated from the header by a "white space" (ASCII code 0 to 9, 11 to 32 decimal, e.g. blank). Allowed parameters are:

- Numeric values
- Special numeric values
- Boolean parameters
- Text
- Character strings
- Block data

The parameters required for each command and the allowed range of values are specified in the command description.

SCPI Command Structure

Numeric values

Numeric values can be entered in any form, i.e. with sign, decimal point and exponent. Values exceeding the resolution of the instrument are rounded up or down. The mantissa may comprise up to 255 characters, the exponent must lie inside the value range -32000 to 32000. The exponent is introduced by an "E" or "e". Entry of the exponent alone is not allowed. In the case of physical quantities, the unit can be entered. Allowed unit prefixes are G (giga), MA (mega), MOHM and MHZ are also allowed), K (kilo), M (milli), U (micro) and N (nano). If the unit is missing, the basic unit is used.

Example: SENS: FREQ: STOP 1.5GHz = SENS: FREQ: STOP 1.5E9

Units

For physical quantities, the unit can be entered. Allowed unit prefixes are:

- G (giga)
- MA (mega), MOHM, MHZ
- K (kilo)
- M (milli)
- U (micro)
- N (nano)

If the unit is missing, the basic unit is used.

Example:

```
SENSe: FREQ: STOP 1.5GHz = SENSe: FREQ: STOP 1.5E9
```

Some settings allow relative values to be stated in percent. According to SCPI, this unit is represented by the PCT string.

Example:

HCOP: PAGE: SCAL 90PCT

Special numeric values

The texts listed below are interpreted as special numeric values. In the case of a query, the numeric value is provided.

MIN/MAX

MINimum and MAXimum denote the minimum and maximum value.

DEF

DEFault denotes a preset value which has been stored in the EPROM. This value conforms to the default setting, as it is called by the *RST command.

UP/DOWN

UP, DOWN increases or reduces the numeric value by one step. The step width can be specified via an allocated step command for each parameter which can be set via UP, DOWN.

INF/NINF

SCPI Command Structure

INFinity, Negative INFinity (NINF) represent the numeric values 9.9E37 or -9.9E37, respectively. INF and NINF are only sent as instrument responses.

NAN

Not A Number (NAN) represents the value 9.91E37. NAN is only sent as a instrument response. This value is not defined. Possible causes are the division of zero by zero, the subtraction of infinite from infinite and the representation of missing values.

Example:

Setting command: SENSe:LIST:FREQ MAXimum Query: SENS:LIST:FREQ?, Response: 3.5E9

Queries for special numeric values

The numeric values associated to MAXimum/MINimum/DEFault can be queried by adding the corresponding mnemonics to the command. They must be entered following the quotation mark.

Example: SENSe:LIST:FREQ? MAXimum

Returns the maximum numeric value as a result.

Boolean Parameters

Boolean parameters represent two states. The "ON" state (logically true) is represented by "ON" or a numeric value 1. The "OFF" state (logically untrue) is represented by "OFF" or the numeric value 0. The numeric values are provided as the response for a query.

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text parameters

Text parameters observe the syntactic rules for mnemonics, i.e. they can be entered using a short or long form. Like any parameter, they have to be separated from the header by a white space. In the case of a query, the short form of the text is provided.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP: PAGE: ORI?

Response: LAND

Character strings

Strings must always be entered in quotation marks (' or ").

SCPI Command Structure

Example:

HCOP:ITEM:LABel "Test1" or HCOP:ITEM:LABel 'Test1'

Block data

Block data is a format which is suitable for the transmission of large amounts of data. A command using a block data parameter has the following structure:

Example:

FORMat:READings:DATA #45168xxxxxxxx

The ASCII character # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 4 following digits indicate the length to be 5168 bytes. The data bytes follow. During the transmission of these data bytes all end or other control signs are ignored until all bytes are transmitted.

#0 specifies a data block of indefinite length. The use of the indefinite format requires a NL^END message to terminate the data block. This format is useful when the length of the transmission is not known or if speed or other considerations prevent segmentation of the data into blocks of definite length.

6.3.4 Overview of Syntax Elements

The following table provides an overview of the syntax elements:

:	The colon separates the mnemonics of a command. In a command line the separating semicolon marks the uppermost command level.
;	The semicolon separates two commands of a command line. It does not alter the path.
,	The comma separates several parameters of a command.
?	The question mark forms a query.
*	The asterisk marks a common command.
	Quotation marks introduce a string and terminate it (both single and double quotation marks are possible).
#	The hash symbol introduces binary, octal, hexadecimal and block data. Binary: #B10110 Octal: #07612 Hexa: #HF3A7 Block: #21312
	A "white space" (ASCII-Code 0 to 9, 11 to 32 decimal, e.g. blank) separates the header from the parameters.

6.3.5 Structure of a command line

A command line may consist of one or several commands. It is terminated by one of the following:

SCPI Command Structure

- a <New Line>
- a <New Line> with EOI
- an EOI together with the last data byte

Several commands in a command line must be separated by a semicolon ";". If the next command belongs to a different command system, the semicolon is followed by a colon.

Example:

```
MMEM:COPY "Test1", "MeasurementXY"; : HCOP:ITEM ALL
```

This command line contains two commands. The first command belongs to the MMEM system, the second command belongs to the HCOP system.

If the successive commands belong to the same system, having one or several levels in common, the command line can be abbreviated. To this end, the second command after the semicolon starts with the level that lies below the common levels. The colon following the semicolon must be omitted in this case.

Example:

```
HCOP: ITEM ALL; : HCOP: IMM
```

This command line contains two commands. Both commands are part of the HCOP command system, i.e. they have one level in common.

When abbreviating the command line, the second command begins with the level below HCOP. The colon after the semicolon is omitted. The abbreviated form of the command line reads as follows:

```
HCOP: ITEM ALL; IMM
```

A new command line always begins with the complete path.

Example:

```
HCOP:ITEM ALL HCOP:IMM
```

6.3.6 Responses to Queries

A query is defined for each setting command unless explicitly specified otherwise. It is formed by adding a question mark to the associated setting command. According to SCPI, the responses to queries are partly subject to stricter rules than in standard IEEE 488.2.

The requested parameter is transmitted without a header.

```
Example: HCOP: PAGE: ORI?, Response: LAND
```

 Maximum values, minimum values and all other quantities that are requested via a special text parameter are returned as numeric values.

```
Example: SENSe: FREQuency: STOP? MAX, Response: 3.5E9
```

Command Sequence and Synchronization

 Numeric values are output without a unit. Physical quantities are referred to the basic units or to the units set using the Unit command. The response 3.5E9 in the previous example stands for 3.5 GHz.

Truth values (Boolean values) are returned as 0 (for OFF) and 1 (for ON).

Example:

Setting command: HCOPy: DEV: COL ON

Query: HCOPy: DEV: COL?

Response: 1

Text (character data) is returned in a short form.

Example:

Setting command: HCOPy: PAGE: ORIentation LANDscape

Query: HCOP:PAGE:ORI?

Response: LAND

6.4 Command Sequence and Synchronization

IEEE 488.2 defines a distinction between overlapped and sequential commands:

- A sequential command is one which finishes executing before the next command starts executing. Commands that are processed quickly are usually implemented as sequential commands. Sequential commands are not implemented in the instrument, however the execution time of most commands is so short that they act as sequential commands when sent in different command lines.
- An overlapping command is one which does not automatically finish executing before the next command starts executing. Usually, overlapping commands take longer to process and allow the program to do other tasks while being executed. If overlapping commands do have to be executed in a defined order, e.g. in order to avoid wrong measurement results, they must be serviced sequentially. This is called synchronization between the controller and the instrument.

Setting commands within one command line, even though they may be implemented as sequential commands, are not necessarily serviced in the order in which they have been received. In order to make sure that commands are actually carried out in a certain order, each command must be sent in a separate command line.

Command Sequence and Synchronization

Example: Commands and queries in one message

The response to a query combined in a program message with commands that affect the queried value is not predictable.

The following commands always return the specified result:

```
:FREQ:STAR 1GHZ; SPAN 100 :FREQ:STAR?
```

Result:

1000000000 (1 GHz)

Whereas the result for the following commands is not specified by SCPI:

```
:FREQ:STAR 1GHz;STAR?;SPAN 1000000
```

The result could be the value of STARt before the command was sent since the instrument might defer executing the individual commands until a program message terminator is received. The result could also be 1 GHz if the instrument executes commands as they are received.

As a general rule, send commands and queries in different program messages.

Example: Overlapping command with *OPC

The instrument implements <code>INITiate[:IMMediate]</code> as an overlapped command. Assuming that <code>INITiate[:IMMediate]</code> takes longer to execute than <code>*OPC</code>, sending the following command sequence results in initiating a sweep and, after some time, setting the <code>OPC</code> bit in the <code>ESR</code>:

```
INIT; *OPC.
```

Sending the following commands still initiates a sweep:

```
INIT; *OPC; *CLS
```

However, since the operation is still pending when the instrument executes *CLS, forcing it into the "Operation Complete Command Idle" State (OCIS), *OPC is effectively skipped. The OPC bit is not set until the instrument executes another *OPC command.

6.4.1 Preventing Overlapping Execution

To prevent an overlapping execution of commands, one of the commands *OPC, *OPC? or *WAI can be used. All three commands cause a certain action only to be carried out after the hardware has been set. By suitable programming, the controller can be forced to wait for the corresponding action to occur.

Command Sequence and Synchronization

Table 6-2: Synchronization using *OPC, *OPC? and *WAI

Com- mand	Action	Programming the controller
*OPC	Sets the Operation Complete bit in the ESR after all previous commands have been executed.	 Setting bit 0 in the ESE Setting bit 5 in the SRE Waiting for service request (SRQ)
*OPC?	Stops command processing until 1 is returned. This is only the case after the Operation Complete bit has been set in the ESR. This bit indicates that the previous setting has been completed.	Sending *OPC? directly after the command whose processing should be terminated before other commands can be executed.
*WAI	Stops further command processing until all commands sent before *WAI have been executed.	Sending *WAI directly after the command whose processing should be terminated before other commands are executed.

Command synchronization using *WAI or *OPC? appended to an overlapped command is a good choice if the overlapped command takes only little time to process. The two synchronization techniques simply block overlapped execution of the command.

For time consuming overlapped commands it is usually desirable to allow the controller or the instrument to do other useful work while waiting for command execution. Use one of the following methods:

*OPC with a service request

- 1. Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Set bit no. 5 in the SRE: *SRE 32 to enable ESB service request.
- 3. Send the overlapped command with *OPC
- 4. Wait for a service request

The service request indicates that the overlapped command has finished.

*OPC? with a service request

- 1. Set bit no. 4 in the SRE: *SRE 16 to enable MAV service request.
- 2. Send the overlapped command with *OPC?
- 3. Wait for a service request

The service request indicates that the overlapped command has finished.

Event Status Register (ESE)

- 1. Set the OPC mask bit (bit no. 0) in the ESE: *ESE 1
- 2. Send the overlapped command without *OPC, *OPC? or *WAI
- Poll the operation complete state periodically (by means of a timer) using the sequence: *OPC; *ESR?

A return value (LSB) of 1 indicates that the overlapped command has finished.

Status Reporting System

*OPC? with short timeout

- 1. Send the overlapped command without *OPC, *OPC? or *WAI
- 2. Poll the operation complete state periodically (by means of a timer) using the sequence: <short timeout>; *OPC?
- 3. A return value (LSB) of 1 indicates that the overlapped command has finished. In case of a timeout, the operation is ongoing.
- 4. Reset timeout to former value
- 5. Clear the error queue with SYStem: ERRor? to remove the "-410, Query interrupted" entries.

Using several threads in the controller application

As an alternative, provided the programming environment of the controller application supports threads, separate threads can be used for the application GUI and for controlling the instrument(s) via SCPI.

A thread waiting for a *OPC? thus will not block the GUI or the communication with other instruments.

6.5 Status Reporting System

The status reporting system stores all information on the current operating state of the instrument, and on errors which have occurred. This information is stored in the status registers and in the error queue.

You can query both with the commands of the STATus Subsystem.

6.5.1 Hierarchy of the Status Registers

The Figure 6-1 shows the hierarchical structure of information in the status registers (ascending from left to right).

Status Reporting System

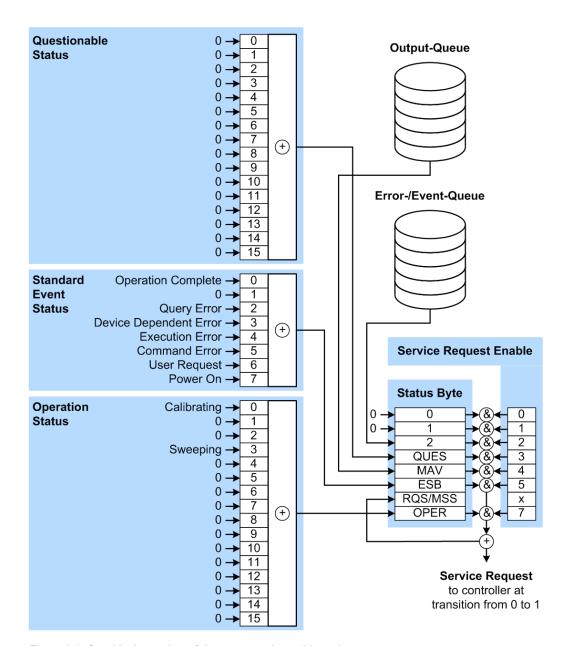


Figure 6-1: Graphical overview of the status registers hierarchy

OPER = Operation Status Summary Bit
RQS/MSS = Service Request Generation
ESB = Standard Event Status Summary Bit
MAV = Message Available in Output Queue
QUES = Questionable Status Summary Bit
2 = Error-/Event-Queue

1, 0 = Error- /Event-Queue

Note: This legend explains the abbreviations to the Status Byte Register.

The R&S SMF uses the following status registers:

• Status Byte (STB) and Service Request Enable (SRE), see Chapter 6.5.3, "Status Byte (STB) and Service Request Enable Register (SRE)", on page 347.

Status Reporting System

 Standard Event Status, i.e. the Event status Register (ESR) and the Event Status Enable (ESE), see Chapter 6.5.4, "Event Status Register (ESR) and Event Status Enable Register (ESE)", on page 348.

 Questionable Status and Operation Status, the (SCPI status registers, see Chapter 6.5.2, "Structure of a SCPI Status Register", on page 345, Chapter 6.5.5, "Questionable Status Register (STATus:QUEStionable)", on page 348 and Chapter 6.5.6, "Operation Status Register (STATus:OPERation)", on page 349.

Output-Queue

The output queue contains the messages the instrument returns to the controller. It is not part of the status reporting system but determines the value of the \mathtt{MAV} bit in the \mathtt{STB} and thus is represented in the overview.

• Error-/Event-Queue

The error-/event-queue contains all errors and events that have occurred in the past. When reading the queue, the instrument starts with the first occurred error/event.

All status registers have the same internal structure.

SRE, ESE

The service request enable register SRE can be used as ENABle part of the STB if the STB is structured according to SCPI. By analogy, the ESE can be used as the ENABle part of the ESR.

6.5.2 Structure of a SCPI Status Register

Each standard SCPI register consists of 5 parts. Each part has a width of 16 bits and has different functions. The individual bits are independent of each other, i.e. each hardware status is assigned a bit number which is valid for all five parts. Bit 15 (the most significant bit) is set to zero for all parts. Thus the contents of the register parts can be processed by the controller as positive integers.

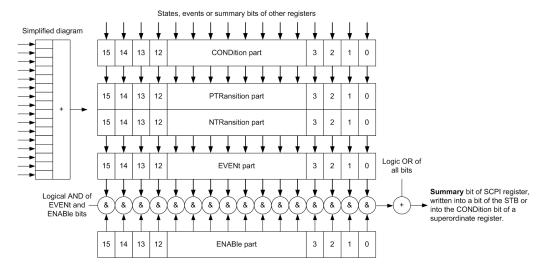


Figure 6-2: The status-register model

Status Reporting System

Description of the five status register parts

The five parts of a SCPI register have different properties and functions:

CONDition

The CONDition part is written into directly by the hardware or the sum bit of the next lower register. Its contents reflect the current instrument status. This register part can only be read, but not written into or cleared. Its contents are not affected by reading.

• PTRansition / NTRansition

The two transition register parts define which state transition of the CONDition part (none, 0 to 1, 1 to 0 or both) is stored in the EVENt part.

The **Positive-TRansition** part acts as a transition filter. When a bit of the CONDition part is changed from 0 to 1, the associated PTR bit decides whether the EVENt bit is set to 1.

- PTR bit =1: the EVENt bit is set.
- PTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

The **Negative-TRansition** part also acts as a transition filter. When a bit of the CONDition part is changed from 1 to 0, the associated NTR bit decides whether the EVENt bit is set to 1.

- NTR bit =1: the EVENt bit is set.
- NTR bit =0: the EVENt bit is not set.

This part can be written into and read as required. Its contents are not affected by reading.

EVENt

The EVENt part indicates whether an event has occurred since the last reading, it is the "memory" of the condition part. It only indicates events passed on by the transition filters. It is permanently updated by the instrument. This part can only be read by the user. Reading the register clears it. This part is often equated with the entire register.

ENABle

The ENABle part determines whether the associated EVENt bit contributes to the sum bit (see below). Each bit of the EVENt part is "ANDed" with the associated ENABle bit (symbol '&'). The results of all logical operations of this part are passed on to the sum bit via an "OR" function (symbol '+').

ENABle bit = 0: the associated EVENt bit does not contribute to the sum bit ENABle bit = 1: if the associated EVENt bit is "1", the sum bit is set to "1" as well. This part can be written into and read by the user as required. Its contents are not affected by reading.

Sum bit

The sum bit is obtained from the EVENt and ENABle part for each register. The result is then entered into a bit of the CONDition part of the higher-order register.

Status Reporting System

The instrument automatically generates the sum bit for each register. Thus an event can lead to a service request throughout all levels of the hierarchy.

6.5.3 Status Byte (STB) and Service Request Enable Register (SRE)

The STatus Byte (STB) is already defined in IEEE 488.2. It provides a rough overview of the instrument status by collecting the pieces of information of the lower registers. A special feature is that bit 6 acts as the sum bit of the remaining bits of the status byte.

The STB is read using the command *STB? or a serial poll.

The STatus Byte (STB) is linked to the Service Request Enable (SRE) register. Each bit of the STB is assigned a bit in the SRE. Bit 6 of the SRE is ignored. If a bit is set in the SRE and the associated bit in the STB changes from 0 to 1, a service request (SRQ) is generated. The SRE can be set using the command *SRE and read using the command *SRE?

Table 6-3: Meaning of the bits used in the status byte

Bit No.	Meaning
01	Not used
2	Error Queue not empty
	The bit is set when an entry is made in the error queue. If this bit is enabled by the SRE, each entry of the error queue generates a service request. Thus an error can be recognized and specified in greater detail by polling the error queue. The poll provides an informative error message. This procedure is to be recommended since it considerably reduces the problems involved with remote control.
3	QUEStionable status register summary bit
	The bit is set if an EVENt bit is set in the QUEStionable status register and the associated ENABle bit is set to 1. A set bit indicates a questionable instrument status, which can be specified in greater detail by querying the STATUS: QUESTIONABLE status register.
4	MAV bit (message available)
	The bit is set if a message is available in the output queue which can be read. This bit can be used to enable data to be automatically read from the instrument to the controller.
5	ESB bit
	Sum bit of the event status register. It is set if one of the bits in the event status register is set and enabled in the event status enable register. Setting of this bit indicates a serious error which can be specified in greater detail by polling the event status register.
6	MSS bit (master status summary bit)
	The bit is set if the instrument triggers a service request. This is the case if one of the other bits of this registers is set together with its mask bit in the service request enable register SRE.
7	STATus: OPERation status register summary bit
	The bit is set if an EVENt bit is set in the OPERation status register and the associated ENABle bit is set to 1. A set bit indicates that the instrument is just performing an action. The type of action can be determined by querying the STATUS: OPERation status register.

Status Reporting System

6.5.4 Event Status Register (ESR) and Event Status Enable Register (ESE)

The ESR is defined in IEEE 488.2. It can be compared with the EVENt part of a SCPI register. The event status register can be read out using command *ESR?.

The ESE corresponds to the ENABle part of a SCPI register. If a bit is set in the ESE and the associated bit in the ESR changes from 0 to 1, the ESB bit in the STB is set. The ESE register can be set using the command *ESE and read using the command *ESE?

Table 6-4: Meaning of the bits used in the event status register

Bit No.	Meaning
0	Operation Complete This bit is set on receipt of the command *OPC exactly when all previous commands have been executed.
1	Not used
2	Query Error This bit is set if either the controller wants to read data from the instrument without having sent a query, or if it does not fetch requested data and sends new instructions to the instrument instead. The cause is often a query which is faulty and hence cannot be executed.
3	Device-dependent Error This bit is set if a device-dependent error occurs. An error message with a number between -300 and -399 or a positive error number, which denotes the error in greater detail, is entered into the error queue.
4	Execution Error This bit is set if a received command is syntactically correct but cannot be performed for other reasons. An error message with a number between -200 and -300, which denotes the error in greater detail, is entered into the error queue.
5	Command Error This bit is set if a command is received, which is undefined or syntactically incorrect. An error message with a number between -100 and -200, which denotes the error in greater detail, is entered into the error queue.
6	User Request This bit is set when the instrument is switched over to manual control.
7	Power On (supply voltage on) This bit is set on switching on the instrument.

6.5.5 Questionable Status Register (STATus:QUEStionable)

This register contains information on questionable instrument states. Such states may occur when the instrument is not operated in compliance with its specifications.

To read the register, use the query commands STAT:QUEST:COND? or STAT:QUEST[:EVEN]?.

Status Reporting System

Table 6-5: Meaning of the bits used in the questionable status register

Bit No.	Meaning
0–15	Not used

6.5.6 Operation Status Register (STATus:OPERation)

This condition part contains information on the actions currently being performed by the instrument, while the event part contains information on the actions performed by the instrument since the last readout of the register.

To read the register, use the query commands STAT:OPER:COND? or STAT:OPER[:EVEN]?.

Table 6-6: Meaning of the bits used in the operation status register

Bit No.	Meaning
0	Calibrating The bit is set during the calibration phase.
1–2	Not used
3	Sweeping This bit is set during a sweep in automatic or single mode.
4–15	Not used

6.5.7 Application of the Status Reporting System

The purpose of the status reporting system is to monitor the status of one or several devices in a measuring system. To do this and react appropriately, the controller must receive and evaluate the information of all devices. The following standard methods are used:

- Service request (SRQ) initiated by the instrument
- Serial poll of all devices in the bus system, initiated by the controller to find out who sent an SRQ and why
- Query of a specific instrument status by commands
- Query of the error queue

6.5.7.1 Service Request

Under certain circumstances, the instrument can send a service request (SRQ) to the controller. Usually this service request initiates an interrupt at the controller, to which the control program can react appropriately. An SRQ is always initiated if one or several of bits 2, 4 or 5 of the status byte are set and enabled in the SRE. Each of these bits combines the information of the error queue or the output buffer. To use the possibilities of the service request effectively, all bits should be set to "1" in the enable registers SRE and ESE.

Status Reporting System

Example:

Use command *OPC to generate an SRQ.

*ESE 1 - set bit 0 of ESE (Operation Complete)

*SRE 32 - set bit 5 of SRE (ESB).

After its settings have been completed, the instrument generates an SRQ.

The SRQ is the only possibility for the instrument to become active on its own. Each controller program should set the instrument such that a service request is initiated in the case of malfunction. The program should react appropriately to the service request.

6.5.7.2 Serial Poll

In a serial poll, just as with command *STB, the status byte of an instrument is queried. However, the guery is realized via interface messages and is thus clearly faster.

The serial poll method is defined in IEEE 488.1 and used to be the only standard possibility for different instruments to poll the status byte. The method also works for instruments which do not adhere to SCPI or IEEE 488.2.

The serial poll is mainly used to obtain a fast overview of the state of several instruments connected to the controller.

6.5.7.3 Query of an instrument status

Each part of any status register can be read using queries. There are two types of commands:

- The common commands *ESR?, *IDN?, *IST?, *STB? query the higher-level registers.
- The commands of the STATus system query the SCPI registers (STATus:QUEStionable...)

The returned value is always a decimal number that represents the bit pattern of the queried register. This number is evaluated by the controller program.

Queries are usually used after an SRQ in order to obtain more detailed information on the cause of the SRQ.

6.5.7.4 Error Queue

Each error state in the instrument leads to an entry in the error queue. The entries of the error queue are detailed plain text error messages that can be looked up in the Error Log or queried via remote control using SYSTem:ERROr[:NEXT]? or SYSTem:ERROr:ALL? Each call of SYSTem:ERROr[:NEXT]? provides one entry from the error queue. If no error messages are stored there any more, the instrument responds with 0, "No error".

The error queue should be queried after every SRQ in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regu-

General Programming Recommendations

larly since faulty commands from the controller to the instrument are recorded there as well.

6.5.8 Reset Values of the Status Reporting System

The following table contains the different commands and events causing the status reporting system to be reset. None of the commands, except of *RST and SYSTem: PRESet affect the functional instrument settings. In particular, DCL does not change the instrument settings.

Table 6-7: Resetting the status reporting system

Event Switching on sur voltage Power-On-Status			DCL, SDC	*RST or SYSTem: PRESet	STATus: PRESet	*CLS
	Clear		Clear,			
Effect	0	1	Selected Device Clear)			
Clear STB, ESR	-	Yes	-	-	-	Yes
Clear SRE, ESE	-	Yes	-	-	-	-
Clear PPE	-	Yes	-	-	-	-
Clear error queue	Yes	Yes	-	-	-	Yes
Clear output buffer	Yes	Yes	Yes	1)	1)	1)
Clear command processing and input buffer	Yes	Yes	Yes	-	-	-

¹⁾ The first command in a command line that immediately follows a <PROGRAM MESSAGE TERMINATOR> clears the output buffer.

6.6 General Programming Recommendations

Initial instrument status before changing settings

Manual operation is designed for maximum possible operating convenience. In contrast, the priority of remote control is the "predictability" of the instrument status. Thus, when a command attempts to define incompatible settings, the command is ignored and the instrument status remains unchanged, i.e. other settings are not automatically adapted. Therefore, control programs should always define an initial instrument status (e.g. using the *RST command) and then implement the required settings.

Command sequence

As a general rule, send commands and queries in different program messages. Otherwise, the result of the query may vary depending on which operation is performed first (see also Preventing Overlapping Execution).

General Programming Recommendations

Reacting to malfunctions

The service request is the only possibility for the instrument to become active on its own. Each controller program should instruct the instrument to initiate a service request in case of malfunction. The program should react appropriately to the service request.

Error queues

The error queue should be queried after every service request in the controller program as the entries describe the cause of an error more precisely than the status registers. Especially in the test phase of a controller program the error queue should be queried regularly since faulty commands from the controller to the instrument are recorded there as well.

7 Remote Control Commands

In the following, all remote-control commands will be presented in detail with their parameters and the ranges of numerical values.

For an introduction to remote control and the status registers, refer to Chapter 6, "Remote Control Basics", on page 309.

7.1 Conventions used in SCPI Command Descriptions

Note the following conventions used in the remote command descriptions:

Command usage

If not specified otherwise, commands can be used both for setting and for querying parameters.

If a command can be used for setting or querying only, or if it initiates an event, the usage is stated explicitly.

Parameter usage

If not specified otherwise, a parameter can be used to set a value and it is the result of a query.

Parameters required only for setting are indicated as **Setting parameters**.

Parameters required only to refine a query are indicated as **Query parameters**.

Parameters that are only returned as the result of a query are indicated as **Return values**.

Conformity

Commands that are taken from the SCPI standard are indicated as **SCPI confirmed**. All commands used by the R&S SMF follow the SCPI syntax rules.

Asynchronous commands

A command which does not automatically finish executing before the next command starts executing (overlapping command) is indicated as an **Asynchronous command**.

Reset values (*RST)

Default parameter values that are used directly after resetting the instrument (*RST command) are indicated as *RST values, if available.

Default unit

This is the unit used for numeric values if no other unit is provided with the parameter

Manual operation

If the result of a remote command can also be achieved in manual operation, a link to the description is inserted.

7.2 Common Commands

Common commands are described in the IEEE 488.2 (IEC 625-2) standard. These commands have the same effect and are employed in the same way on different devi-

ces. The headers of these commands consist of "*" followed by three letters. Many common commands are related to the Status Reporting System.

Available common commands:

*CLS	354
*ESE	354
*ESR?	354
*IDN?	355
* ST?	
*OPC	355
*OPT?	355
*PRE	
*PSC	356
*RCL	
*RST	
*SAV	
*SRE	357
*STB?	
*TRG	
*TST?	
*WAI	

*CLS

Clear status

Sets the status byte (STB), the standard event register (ESR) and the EVENt part of the QUEStionable and the OPERation registers to zero. The command does not alter the mask and transition parts of the registers. It clears the output buffer.

Usage: Setting only

*ESE <Value>

Event status enable

Sets the event status enable register to the specified value. The query returns the contents of the event status enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*ESR?

Event status read

Returns the contents of the event status register in decimal form and subsequently sets the register to zero.

Return values:

<Contents> Range: 0 to 255

Usage: Query only

*IDN?

Identification

Returns the instrument identification.

Return values:

<ID> "Rohde&Schwarz,<device type>,<serial number>,<firmware ver-

sion>"

Example: Rohde&Schwarz, SMF,

1407.6004k02/000000,3.1.17.1-03.01.158

Usage: Query only

Manual operation: See "Hardware Options / Software Options" on page 109

*IST?

Individual status query

Returns the contents of the IST flag in decimal form. The IST flag is the status bit which is sent during a parallel poll.

Return values:

<ISTflag> 0 | 1

Usage: Query only

*OPC

Operation complete

Sets bit 0 in the event status register when all preceding commands have been executed. This bit can be used to initiate a service request. The query form writes a "1" into the output buffer as soon as all preceding commands have been executed. This is used for command synchronization.

*OPT?

Option identification query

Queries the options included in the instrument. For a list of all available options and their description refer to the data sheet.

Return values:

<Options> The query returns a list of options. The options are returned at

fixed positions in a comma-separated string. A zero is returned

for options that are not installed.

Usage: Query only

Manual operation: See "Hardware Options / Software Options" on page 109

*PRE <Value>

Parallel poll register enable

Sets parallel poll enable register to the indicated value. The query returns the contents of the parallel poll enable register in decimal form.

Parameters:

<Value> Range: 0 to 255

*PSC <Action>

Power on status clear

Determines whether the contents of the ENABle registers are preserved or reset when the instrument is switched on. Thus a service request can be triggered when the instrument is switched on, if the status registers ESE and SRE are suitably configured. The query reads out the contents of the "power-on-status-clear" flag.

Parameters:

<Action> 0 | 1

0

The contents of the status registers are preserved.

1

Resets the status registers.

*RCL <Number>

Recall

Loads the instrument settings from an intermediate memory identified by the specified number. The instrument settings can be stored to this memory using the command *SAV with the associated number.

It also activates the instrument settings which are stored in a file and loaded using the MMEMory: LOAD <number>, <file name.extension> command.

Manual operation: See "Recall" on page 144

*RST

Reset

Sets the instrument to a defined default status. The default settings are indicated in the description of commands.

The command is equivalent to SYSTem: PRESet.

Usage: Setting only

Manual operation: See "Preset" on page 103

*SAV <Number>

Save

Stores the current instrument settings under the specified number in an intermediate memory. The settings can be recalled using the command *RCL with the associated number.

To transfer the stored instrument settings in a file, use the command :MMEMory: STORe:STATe.

Manual operation: See "Save" on page 143

*SRE <Contents>

Service request enable

Sets the service request enable register to the indicated value. This command determines under which conditions a service request is triggered.

Parameters:

<Contents> Contents of the service request enable register in decimal form.

Bit 6 (MSS mask bit) is always 0.

Range: 0 to 255

*STB?

Status byte query

Reads the contents of the status byte in decimal form.

Usage: Query only

*TRG

Trigger

Triggers all actions waiting for a trigger event. In particular, *TRG generates a manual trigger signal. This common command complements the commands of the TRIGger subsystem.

Usage: Event

*TST?

Self-test query

Initiates self-tests of the instrument and returns an error code

Preset Commands

Return values:

<ErrorCode> integer > 0 (in decimal format)

An error occurred.

(For details see the Service Manual supplied with the instru-

ment).

0

No errors occurred.

Usage: Query only

*WAI

Wait to continue

Prevents servicing of the subsequent commands until all preceding commands have been executed and all signals have settled (see also command synchronization and *OPC).

Usage: Event

7.3 Preset Commands

The preset commands are not bundled in one subsystem. Therefore, they are listed separately in this section. In addition, a specific preset command is provided for each digital standard and for the fader. These specific commands are described in the associated subsystems.

Four presetting actions are available:

- Activating the default state of all internal instrument functions (*RST on page 356).
 Functions that concern the integration of the instrument into a measurement setup are not changed, e.g. GPIB address or reference oscillator source settings.
- Activating the preset state of the parameters related to the selected signal path (: SOURce<hw>: PRESet on page 359)
- Activating the preset state of all parameters that are not related to the signal path (:DEVice:PRESet on page 358)
- Activating the original state of delivery (factory reset, :SYSTem:FPReset
 on page 359). Only functions that are protected by a password remain unchanged
 as well as the passwords themselves.

:DEVice:PRESet

Presets all parameters which are not related to the signal path, including the LF generator.

Example: presets all instruments settings that are not related to the signal

path

Usage: Event

:SOURce<hw>:PRESet

The command presets all parameters which are related to the selected signal path.

Fading (if available) and transient recorder are only preset by command *RST.

Example: SOUR: PRES

presets all settings that are related to signal path

Usage: Event

:SYSTem:PRESet

Triggers an instrument reset. It has the same effect as:

- the PRESET key on the front panel
- the *RST command

For an overview of the settings affected by the preset function, see Chapter 5.2.2, "Default Instrument Settings - Preset Key", on page 103.

Example: SYST: PRES

All instrument settings (also those that are not currently active)

are reset to their default values.

Usage: Setting only

:SYSTem:FPReset

Triggers an instrument reset to the original state of delivery.

Note: Since Factory Preset resets the Remote Channel and network settings to the default values, executing Factory Preset via remote control terminates the connection to the instrument, if these settings had been configured to values different to the default ones!

The factory preset function resets nearly all instrument settings. In addition to the regular preset by means of the PRESET key, a "Factory Preset" resets also the following values:

- Reference frequency settings ("Ref Oscillator" menu)
- Power on settings ("Level/EMF" menu)
- Network settings including hostname ("Setup" menu)
- Remote Channel settings including GPIB address ("Setup" menu)
- Start/Stop Display Update ("Setup" menu)
- Display and keyboard settings ("Setup" menu).

To maintain security, password settings and all settings protected by these passwords like disabled USB and LAN connections are not changed.

Not affected by the "Factory Preset" are also user data, lists or instrument settings files, created for example by means of the Save/Recall function.

CALibration Subsystem

Example: SYST: FPR

all instrument settings (also those that are not currently active)

are reset to the factory values.

Usage: Event

Manual operation: See "Factory Preset" on page 135

7.4 CALibration Subsystem

The CALibration system contains the commands for adjustment. Adjustment is triggered by the query commands. The response "0" indicates error-free adjustment, and the response "1" means that an error occurred during adjustment.

:CALibration <hw>:ALL[:MEASure]?</hw>	360
:CALibration <hw>:FREQuency[:MEASure]?</hw>	360
:CALibration <hw>:LEVel:LOOPgain:STATe</hw>	361
:CALibration <hw>:LEVel[:MEASure]?</hw>	361
:CALibration <hw>:LEVel:EXTern:DATA</hw>	361
:CALibration <hw>:LEVel:STATe</hw>	362
:CALibration:LFOutput[:MEASure]?	362
:CALibration <hw>:ROSCillator[:DATA]</hw>	

:CALibration<hw>:ALL[:MEASure]? [<Force>]

Starts all internal adjustments that do not require external measurement equipment.

Query parameters:

<Force> string

Return values:

<Measure> select

Example: CAL:ALL:MEAS?

starts the adjustment of all functions for the entire instrument.

Response: "0"

adjustment has been performed successfully.

Usage: Query only

Manual operation: See "Adjust All" on page 106

:CALibration<hw>:FREQuency[:MEASure]?

Starts all adjustments which affect the frequency.

Return values:

<Measure> 0 | 1

CALibration Subsystem

Example: CAL: FREQ: MEAS?

starts the adjustments for maximum frequency accuracy.

Response: "0"

the adjustments have been performed successfully.

Usage: Query only

Manual operation: See "Adjust Synthesis" on page 106

:CALibration<hw>:LEVel:LOOPgain:STATe <State>

The command switches on or off use of external loopgain correction data.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: CAL:LEV:LOOP:STAT ON

switches on use of external loopgain correction data.

Manual operation: See "Use ext. Loop Gain Correction Data" on page 106

:CALibration<hw>:LEVel[:MEASure]? [<Force>]

Starts all adjustments which affect the level.

Query parameters:

<Force> string

*RST: force

Return values:

<Measure> 0 | 1

Example: CAL:LEV:MEAS?

starts adjustments for maximum level accuracy.

Response: "0"

adjustment has been performed successfully.

Usage: Query only

Manual operation: See "Adjust Level" on page 106

:CALibration<hw>:LEVel:EXTern:DATA <Data>

Queries what data has been used for the level calibration.

By default the instrument uses correction data obtained in the factory before delivery. In addition, customer data can be used for external level correction. The customer data is obtained using a R&S NRP power sensor. External level correction is a protected function (see service manual, chapter 2, "Adjustment").

Parameters:

<Data> FACTory | CUSTomer

*RST: FACTory

DIAGnostic Subsystem

Example: CAL:LEV:EXT:DATA FACT

selects the use of the data aquired at the factory for external

level correction.

Manual operation: See "Adjustment Data" on page 185

:CALibration<hw>:LEVel:STATe <State>

Activates/deactivates internal level correction.

Parameters:

<State> ON | OFF

*RST: 1

Example: CAL:LEV:STAT

switches on level correction.

Manual operation: See "Use ext. Level Correction Data" on page 106

:CALibration:LFOutput[:MEASure]?

Performs all adjustments which affect the internal modulation generator.

Return values:

<Measure> 0 | 1 | OFF | ON

Example: CAL:LFO?

starts the adjustments for the modulation generators.

Response: 0

the adjustments have been performed successfully.

Usage: Query only
Options: R&S SMF-B20

Manual operation: See "Adjust Modulation LF Generator" on page 106

:CALibration<hw>:ROSCillator[:DATA] <Data>

Sets the calibration value for the custom defined external adjustment.

Parameters:

<Data> integer

Range: 0 to INT_MAX

*RST: 0

7.5 DIAGnostic Subsystem

The DIAGnostic system contains the commands used for instrument diagnosis and servicing. SCPI does not define any DIAGnostic commands; the commands listed here

DIAGnostic Subsystem

are all Device-specific. All DIAGnostic commands are query commands which are not influenced by *RST.

:DIAGnostic <hw>:BGINfo?</hw>	363
:DIAGnostic <hw>:BGINfo:CATalog?</hw>	363
:DIAGnostic:INFO:OTIMe?	364
:DIAGnostic:INFO:POCount?	364

:DIAGnostic<hw>:BGINfo? [<Board>]

Checks the modules available in the instrument using the variant and revision state.

If the command is sent without parameters being specified, a complete list of all modules is returned (the various entries are separated by commas). The length of the list is variable and depends on the instrument equipment configuration.

If the command is sent with parameters, a list of the specified modules is returned (the various entries are separated by commas). A list of modules names can be called up using the command :DIAGnostic<hw>:BGINfo:CATalog? on page 363.

Query parameters:

<Board> string

Return values:

<BgInfo> < Module name> <Module stock number incl. variant> <Module

revision> < Module serial number>

Each entry for one module consists of four parts which are sepa-

rated by space characters.

Example: DIAG:BGIN:CAT?

queries the instrument configuration.

Response: FSYN, MWIF,....

returns the data of all available modules.

DIAG:BGIN? 'FSYN'

queries the configuration of the FSYN.

Response: FSYN 1234.5678.02 1.5.3 100023 module FSYB with stock number 1234.5678.02 has revision

1.5.3 and serial number 100023.

Usage: Query only

Manual operation: See "Assembly" on page 107

:DIAGnostic<hw>:BGINfo:CATalog?

Queries the names of the assemblies available in the instrument.

Return values:

<Catalog> string

A complete list of all assemblies is returned (the various entries are separated by commas). The length of the list is variable and

depends on the instrument equipment configuration.

DISPlay Subsystem

Example: DIAG:BGIN:CAT

queries the names of the assemblies.

Response: MBRD, SSYN,

Usage: Query only

:DIAGnostic:INFO:OTIMe?

The command queries the number of operation hours.

Return values:

<OTIMe> float

Example: DIAG:INFO:OTIM

queries the operation hours. Response: 100023

The instrument was operated for 100023 hours up to now.

Usage: Query only

Manual operation: See "Operation Time / h" on page 107

:DIAGnostic:INFO:POCount?

The command queries the number of power-on events.

Return values:

<Pocount> float

Example: DIAG:INFO:POC

queries the number of power on events.

Response: 123

The instrument was switched on for 123 times up to now.

Usage: Query only

Manual operation: See "Power On Count" on page 107

7.6 DISPlay Subsystem

The DISPlay subsystem contains the commands to set the power-save mode of the instrument.

:DISPlay:ANNotation:AMPLitude	365
:DISPlay:ANNotation:FREQuency	
:DISPlay:ANNotation[:ALL]	
:DISPlay:DIALog:CLOSe	
:DISPlay:DIALog:CLOSe:ALL	
:DISPlay:DIALog:ID?	
,	
:DISPlay:DIALog:ID?: :DISPlay:DIALog:OPEN	

DISPlay Subsystem

:DISPlay:PSAVe:HOLDoff	366
:DISPlay:PSAVe[:STATe]	
:DISPlay:UPDate	

:DISPlay:ANNotation:AMPLitude <State>

Indicates asterisks instead of the level values in the status bar.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: DISP:ANN:AMPL ON

suppresses the level display.

Manual operation: See "Annotation Amplitude" on page 132

:DISPlay:ANNotation:FREQuency <State>

Indicates asterisks instead of the frequency values in the status bar.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: DISP:ANN:FREQ ON

supresses the frequency display.

Manual operation: See "Annotation Frequency" on page 132

:DISPlay:ANNotation[:ALL] <State>

Displays asterisks instead of the level and frequency values in the status bar of the instrument. This setting is particularly useful when you remotely control the instrument.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: DISP:ANN:AMPL ON

shows asterisks instead of frequency and level values.

:DISPlay:DIALog:CLOSe <DialogId>

Closes the specified dialog. To determine the dialog identifier, use command: DISPlay:DIALog:ID?.

Setting parameters:

<DialogId> string

Example: DISP:DIAL:CLOS "<dialog ID>"

closes the dialog, determined with the "<dialog ID>".

DISPlay Subsystem

Usage: Setting only

:DISPlay:DIALog:CLOSe:ALL

Closes all open dialogs.

Example: DISP:DIAL:CLOS:ALL

Usage: Event

:DISPlay:DIALog:ID?

Returns the dialog identifiers of the open dialogs in a string separated by blanks.

Return values:

<DialogIdList> string

Example: DISP:DIAL:ID?

Response: "<dialog ID(1)> <dialog ID(2)> ...

<dialog ID(n)>"

returns the lds of all opened dialogs.

Usage: Query only

:DISPlay:DIALog:OPEN <DialogId>

Opens the specified dialog. To determine the dialog identifier, use command: DISPlay:DIALog:ID?.

Setting parameters:

<DialogId> string

Example: DISP:DIAL:OPEN "<dialog ID>"

opens the dialog, determined with the "<dialog ID>".

Usage: Setting only

:DISPlay:PSAVe:HOLDoff <HoldoffTimeMin>

Sets the waiting time for the screen-save mode of the display.

Parameters:

<HoldoffTimeMin> integer

Range: 1 to 60 *RST: 10 Default unit: minute

Example: DISP:PSAV:HOLD 8

sets the timeout of the screen saver to 8 minutes.

Manual operation: See "Wait Time" on page 121

:DISPlay:PSAVe[:STATe] <State>

Activates the screen-save mode of the display. If activated, the display including backlight is completely switched off after the elapse of the wait time, provided no entries via front panel, external mouse or external keyboard are made. To determine the wait time, use command :DISPlay:PSAVe:HOLDoff.

This mode is recommended for protecting the display, especially if you operate the instrument via remote control.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: DISP:PSAV ON

activates screen saver mode.

Manual operation: See "Screen Saver Active" on page 120

:DISPlay:UPDate <Update>

Activates the refresh mode of the display.

Parameters:

<Update> 0 | 1 | OFF | ON

*RST: 1

Example: DISP:UPD ON

activates automatic update of the display at defined time inter-

vals.

7.7 FORMat Subsystem

The FORMat subsystem contains the commands which determine the format of the data that the R&S SMF returns to the controller. This affects all query commands which return a list of numerical data or block data. Reference is made to this in the descriptions of the commands.

:FORMat:BORDer	367
:FORMat[:DATA]	368
:FORMat:SREGister	368

:FORMat:BORDer <Border>

Determines the sequence of bytes within a binary block. This only affects blocks which use the IEEE754 format internally.

FORMat Subsystem

Parameters:

<Border> NORMal | SWAPped

NORMal

The instrument expects (with setting commands) and sends (with queries) the least significant byte of each IEEE754 floating-

point number first and the most significant byte last.

SWAPped

The instrument expects (with setting commands) and sends (with queries) the most significant byte of each IEEE754 floating-point number first and the least significant byte last.

*RST: NORMal

Example: FORM:BORD SWAP

the data is transferred with the most significant bit first.

:FORMat[:DATA] <Data>

Determines the data format which the R&S SMF uses to return data. When data is transferred from the control computer to the instrument, the instrument detects the data format automatically. In this case, the value set here is irrelevant.

Parameters:

<Data> ASCii | PACKed

ASCii

Numerical data is transferred as plain text separated by com-

mas.

PACKed

Numerical data is transferred as binary block data. The format within the binary data depends on the command. The various binary data formats are explained in the description of the

parameter types.

*RST: ASCii

Example: FORM ASC

The data is transferred as ASCII data.

:FORMat:SREGister <Format>

Determines the numerical format which is returned when the status registers are queried.

Parameters:

<Format> ASCii | BINary | HEXadecimal | OCTal

ASCII

The register content is returned as a decimal number.

BINary

The register content is returned as a binary number. #B is

placed in front of the number.

HEXadecimal

The register content is returned as a hexadecimal number. #H is

placed in front of the number.

OCTa

The register content is returned as an octal number. #Q is

placed in front of the number.

*RST: ASCii

Example: FORM: SREG HEX

The register content is returned as a hexadecimal number.

7.8 HCOPy Subsystem

The HCOPy subsystem contains the commands to generate a hardcopy of the display.

:HCOPy:DATA?	369
:HCOPy:DEVice	
:HCOPy:DEVice:LANGuage	
:HCOPy[:EXECute]	370
:HCOPy:FILE[:NAME]	371
:HCOPy:FILE[:NAME]:AUTO?	
:HCOPy:FILE[:NAME]:AUTO:DIRectory	
:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar	371
:HCOPy:FILE[:NAME]:AUTO:FILE?	372
:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY?	372
:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe	373
:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh?	373
:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe	373
:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer?	373
:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix	374
:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe	374
:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR?	374
:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe	
:HCOPy:FILE[:NAME]:AUTO:STATe	375
:HCOPy:IMAGe:FORMat	
:HCOPy:IMAGe:SIZE	

:HCOPy:DATA?

The commands transfers the hardcopy data directly as a NByte stream to the remote client.

Return values:

<Data> block data

Example: HCOP:DEV:LANG JPG

HCOP: DATA?

transfers the hardcopy to the remote client.

Usage: Query only

:HCOPy:DEVice < Device>

The command defines the output device. The hardcopy can be output in a file. The HCOPY: FILE:... commands are used for configuration. The file is accessible using the MMEM:.. commands. In addition, the hardcopy data can be directly transferred to the remote client using command: HCOPY: DATA?.

Parameters:

<Device> FILE

*RST: FILE

Example: HCOP: DEV FILE

the hardcopy will be stored in a file.

Manual operation: See "Destination" on page 137

:HCOPy:DEVice:LANGuage < Language >

Selects the bitmap graphic format for the screenshot. It is also possible to directly retrieve the data using command HCOP: DATA?. This command is an alias to command HCOPy: IMAGe: FORMat.

Parameters:

<Language> BMP | JPG | XPM | PNG

*RST: PNG

Example: HCOP:DEV:LANG BMP

selects bitmap as image format.
HCOP:FILE '/usb/HCopy'

defines the directory, path and file name for storing the hard-

copy.

triggers the hardcopy generation.

Manual operation: See "File Options" on page 138

:HCOPy[:EXECute]

Triggers the generation of a hardcopy.

Example: HCOP

triggers the generation of a hardcopy of the current display.

Usage: Event

Manual operation: See "Save" on page 139

:HCOPy:FILE[:NAME] <Name>

Creates/selects a file into which the hardcopy will be stored. The path is specified together with the file name. Access to the file via remote control is possible using the commands of the MMEM-Subsystem. In contrast, command <code>HCOPy:DATA?</code> transfers the hardcopy contents directly to the remote client where they can be further processed.

If automatic file naming is activated, the hardcopy is stored into a file with an automatically generated name (commands <code>HCOPY:FILE[:NAME]:AUTO:...</code>).

Parameters:

<Name> string

Example: HCOP:FILE:NAME '/usb/HCopy'

defines the hardcopy file name.

Manual operation: See "File Info" on page 137

:HCOPy:FILE[:NAME]:AUTO?

Queries the path including the file name of the file with automatically generated name.

Return values:

<Auto> string

Example: see :HCOPy:FILE[:NAME]:AUTO:FILE? on page 372

Usage: Query only

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO:DIRectory < Directory>

Sets the directory into which the hardcopy files will be stored if auto naming is activated (HCOP:FILE:AUTO:STAT ON). The directory will be created if it does not exist yet.

Parameters:

<Directory> string

*RST: .\HCopy

Example: HCOP:FILE:AUTO:DIR '/usb/'

defines the destination directory '/usb/'

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar

Deletes all files with extensions "bmp", "img", "png" and "xpm" in the directory set for automatic naming.

Example: HCOP:FILE:AUTO:DIR:CLE

deletes all image files with extensions "bmp", "img", "png" and

"xpm".

Usage: Event

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO:FILE?

Queries the file name that what generated using the automatic naming settings. By default the automatically generated file name is composed of:

<Pre><Pre>refix><YYYY><MM><DD><Number>.<Format>.

Each component can be deactivated/activated separately to individually design the file name.

Return values:

<File> string

Example: HCOP: DEV: LANG BMP

selects output format *.bmp.
HCOP:FILE:AUTO:DIR '/usb/'
defines the destination directory '/usb/'
HCOP:FILE:AUTO:PREF 'gen'

the file name starts with the prefix 'gen'. The usage of automatic naming with prefix and date in the file name is preset (...: STAT

ON). HCOP

triggers the generation of a hardcopy of the current trace.

HCOP:FILE:AUTO?

queries the path including the file name

Response:

/usb/gen101012008001.bmp' HCOP:FILE:AUTO:FILE?

queries the file name

Response: 'gen101012008001.bmp'

Usage: Query only

Manual operation: See "File Info" on page 137

:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY?

Queries the day of the current system date which will be used in the file name if automatic naming is activated.

Return values:

<Day> integer

Range: 1 to 31 *RST: 1

Operating Manual 1167.2319.32 - 10

Example: HCOP:FILE:AUTO:DAY?

returns the day in the date part of the automatic file name.

Usage: Query only

:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe <State>

Activates the usage of the day in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: HCOP:FILE:AUTO:DAY:STAT OFF

deactivates the use of the day in the automatically generated file

name.

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh?

Queries the month in the date part in the automatic file name.

Return values:

<Month> integer

Range: 1 to 12

*RST: 1

Example: HCOP:FILE:AUTO:MONT?

queries the month in the date part in the automatic file name.

Usage: Query only

:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe <State>

Activates the usage of the month in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: HCOP:FILE:AUTO:MONT:STAT OFF

deactivates the usage of the month in the automatic file name.

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer?

Queries the number in the automatic file name. The number is assigned in such a way that always the lowest possible value for an unique file name within the selected path is used.

On initially switching on the device the number will be reset to the lowest possible value. Starting with number 0 the output directory will be scanned for already existing files. As long as files with the same name are existing the number will be incremented by 1. The number will be automatically set to a number so that the resulting file name will be unique within the selected path. The current number will not be saved in the save recall file but will be temporarily stored within the database. On subsequent saves the number will be incremented.

Return values:

<Number> integer

Range: 0 to 999999

*RST: 0

Example: HCOP:FILE:AUTO:NUMB?

queries the number in the automatic file name.

Usage: Query only

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix <Prefix>

Sets the prefix part in the automatic file name. The usage of the prefix is activated with command HCOP:FILE:AUTO:PREF:STAT ON.

Parameters:

<Pre><Prefix> string

*RST: HCopy

Example: HCOP:FILE:AUTO:PREF 'Snapshot'

appends "Snapshot" as prefix to the generated file name.

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe <State>

Activates the usage of the prefix in the automatic file name. The prefix is entered with command HCOP: FILE: AUTO: PREF.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: HCOP:FILE:AUTO:PREF:STAT OFF

deactivates the usage of the prefix in the automatic file name.

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR?

Queries the year in the date part in the automatic file name.

Return values:

<Year> integer

Range: 1784 to 8000

*RST: 0

Example: HCOPy:FILE:AUTO:YEAR?

queries the year in the date part in the automatic file name.

Usage: Query only

:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe <State>

Activates the usage of the year in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: HCOP:FILE:AUTO:YEAR:STAT OFF

deactivates the usage of the year in the automatic file name.

Manual operation: See "File Options" on page 138

:HCOPy:FILE[:NAME]:AUTO:STATe <State>

Activates/deactivates automatic naming of the hardcopy files.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: HCOP:FILE:AUTO:STAT OFF

deactivates automatic naming.

Manual operation: See "Automatic Naming" on page 137

:HCOPy:IMAGe:FORMat <Format>

This command selects the bitmap graphic format for the screenshot. It is also possible to directly retrieve the data using command HCOP: DATA?.

This command is an alias to command HCOPy: DEVice: LANGuage.

Parameters:

<Format> BMP | JPG | XPM | PNG

*RST: BMP

Example: HCOP:IMAG:FORM XPM

selects the image format XPM.

Manual operation: See "File Options" on page 138

KBOard Subsystem

:HCOPy:IMAGe:SIZE <Size>

The command selects the image size of the hardcopy. The first value of the size setting defines the width, the second value the height of the image.

Parameters:

<Size> string

*RST: depends on device

Example: HCOP:IMAG:SIZE 640,480

sets width and height of the image.

7.9 KBOard Subsystem

The KBOard system contains the commands to set the external keyboard.

| :KBOard:LANGuage | 376 |
|------------------|-----|
| :KBOard:LAYout | 376 |

:KBOard:LANGuage <Language>

This command selects the keyboard language. The assignment of some keys depends on the selected language.

Parameters:

<Language> US | DE

*RST: US

Example: KBO:LANG US

selects keyboard language American English.

Usage: SCPI confirmed

Manual operation: See "Layout (USB Keyboard Settings)" on page 121

:KBOard:LAYout <Layout>

Selects the keyboard language. The assignment of some keys depends on the selected language.

Parameters:

<Layout> CHINese | DANish | DUTCh | DUTBe | ENGLish | ENGUK |

FINNish | FRENch | FREBe | FRECa | GERMan | ITALian | JAPanese | KORean | NORWegian | PORTuguese | RUSSian |

SPANish | SWEDish | ENGUS

*RST: ENGLish

Example: KBO:LAY US

activates American keyboard layout.

Manual operation: See "Layout (USB Keyboard Settings)" on page 121

MMEMory Subsystem

7.10 MMEMory Subsystem

The MMEMory subsystem (Mass Memory) contains the commands for managing files and directories as well as for loading and storing complete instrument settings in files.

The files are stored on the CompactFlash[™] Card of the instrument or on external USB memory devices.

The <code>/var/user/</code> directory can be used to save user-defined data; any subdirectory structure can be created on <code>/var/user/</code>. Some default subdirectories are predefined, but can be changed at any time.

The default directory is determined using the command MMEMory: CDIR.

Use the command : SYSTem: MMEMory: PATH: USER? to query the path of the directory for user-defined data.

The /opt directory is a protected and therefore a not accessible system directory. The files on this directory contain data that must not be changed. Therefore, this directory should not be accessed, since reconstruction of the system partition will lead to data loss.

7.10.1 File Naming Conventions

To enable files in different file systems to be used, the following file naming conventions should be observed.

The file name can be of any length and is case-sensitive, meaning it is distinguished between uppercase and lowercase letters.

The file and the optional file extension are separated by a dot. All letters and numbers are permitted (numbers are, however, not permitted at the beginning of the file name). If possible, special characters should not be used. The use of the slashes "\" and "/" should be avoided since they are used in file paths. A number of names are reserved for the operating system, e.g. CLOCK\$, CON, AUX, COM1...COM4, LPT1...LPT3, NUL and PRN.

In the R&S SMF all files in which lists and settings are stored are given a characteristic extension. The extension is separated from the actual file name by a dot (see Chapter 4.7.2.1, "Extensions for User Files", on page 97 for an overview of the file types).

The two characters "*" and "?" function as "wildcards", meaning they are used for selecting several files. The "?" character represents exactly one character, while the "*" character represents all characters up to the end of the file name. "*.*" therefore stands for all files in a directory.

When used in conjunction with the commands, the parameter <file_name> is specified as a string parameter with quotation marks. It can contain either the complete path including the drive, only the path and the file name, or only the file name. The file name

MMEMory Subsystem

must include the file extension. The same applies for the parameters <directory name> and <path>.

Depending on how much information is provided, either the values specified in the parameter or the values specified with the command MMEM: CDIR (default directory) are used for the path and the drive settings in the commands.

Before the instrument settings can be stored in a file, they have to be stored in an intermediate memory using common command *SAV <number>. The specified number is subsequently used in the :MMEMory:STORe:STATe on page 385 command. Also, subsequently to loading a file with instrument settings with command :MMEMory: LOAD:STATe on page 384, these settings have to be activated with the common command *RCL <number>.

7.10.2 Extensions for User Files

The following table lists all available file extensions for user files. The currently available files on the instrument depend on the installed options.

Table 7-1: List of the automatically assigned file extensions in the instrument

| Function | List type | Contents | File suffix |
|--------------------|-----------|---|----------------|
| Instrument State | Settings | Instrument settings | *.savrcltxt |
| "User Correction" | List | User-defined level correction values | *.uco |
| | | Export Data | *.txt Or *.csv |
| "List Mode" | List | User-defined frequency/level value pairs | *.lsw |
| | | Export Data | *.txt Or *.csv |
| "Pulse Train List" | | User-defined offtime/ontime/repetition values | *.pulstrn |
| | | | |
| ARB Waveform | | ARB Waveform | *.WV |
| SMZ Settings | Settings | Data (firmware) of a connected SMZ frequency multiplier | *.efmfirm |
| NRP Settings | Settings | NRP Settings | *.nrp |

7.10.3 Examples

In these examples, the current instrument setting is stored in the file test.savrcltxt in the directory /var/user/..

Storing and Loading Current Settings

1. Store the current setting in an intermediate memory with the number 4. This setting can be called using command *RCL and the associated number of the memory, for example *RCL 4.

*SAV 4

2. To store the settings in a file in a specific directory, specify the complete path.

```
MMEM:STOR:STAT 4,"/var/user/test.savrcltxt"
```

3. To store the settings in a file in the default drive, set the default drive and specify only the file name.

```
MMEM:CDIR '/var/user/'*SAV 4
MMEM:STOR:STAT 4,"test.savrcltxt"
```

4. Load the file test.savrcltxt in the user directory.

```
MMEM:LOAD:STAT 4,'/var/user/test.savrcltxt'
```

5. Activate the instrument setting of the file test.savrcltxt.

```
*RCL 4
```

Working with Files and Directories

1. Read out all files in the specified directory.

```
MMEM:CAT? '/usb/user'
```

```
Response: 127145265,175325184,"test,DIR,O","temp,DIR,O",
"readme.txt,ASC,1324","state.savrcltxt,STAT,5327",
"waveform.wv,BIN,2342"
```

the directory /usb/user contains the subdirectories test and temp as well as the files readme.txt, state.savrcltxt and waveform.wv which have different file types.

Tip: To query only the subdirectories of the current or specified directory, perform:

```
MMEM:DCAT? '/usb/user'
```

```
Response: 'test', 'temp'
```

To query only the number of subdirectories in the current or specified directory, perform:

```
MMEM:DCAT:LENG? '/usb/user'
```

Response: 2

2. To query the number of files in the current or specified directory, perform:

```
MMEM:CAT:LENG? '/usb/user'
```

Response: 3

3. Create a new subdirectory for mass memory storage in the specified directory.

```
MMEM:MDIR '/usb/new'
```

4. Copy the file state to a new file.

```
MMEM:COPY '/var/user/state.savrcltxt','/usb/new'
```

5. Rename the file state.

```
MMEM:MOVE 'state.savrcltxt','state new.savrcltxt'
```

6. Remove the test directory.

```
MMEM:RDIR '/usb/test'
```

7.10.4 Remote Control Commands

| :MMEMory:CATalog? | 380 |
|---------------------------|-----|
| :MMEMory:CATalog:LENGth? | 380 |
| :MMEMory:CDIRectory | 381 |
| :MMEMory:COPY | 381 |
| :MMEMory:DATA | 382 |
| :MMEMory:DCATalog? | 382 |
| :MMEMory:DCATalog:LENGth? | |
| :MMEMory:DELete | 383 |
| :MEMory:HFRee? | |
| :MMEMory:LOAD:STATe | 384 |
| :MMEMory:MDIRectory | 384 |
| :MMEMory:MOVE | 384 |
| :MMEMory:MSIS | |
| :MMEMory:RDIRectory | |
| :MMEMory:STORe:STATe | |
| • | |

:MMEMory:CATalog? <path>

Returns the content of a particular directory.

Query parameters:

<path> string

String parameter to specify the directory.

If you leave out the path, the command returns the contents of

the directory selected with :MMEMory:CDIRectory.

The path may be relative or absolute.

Return values:

<UsedDiskSpace> Byte size of all files in the directory.

<FreeDiskSpace> Remaining disk space in bytes.

<FileInfo> <NameFileN>,<SuffixFileN>,<SizeFileN>

List of files, separated by commas

<NameFileN>
Name of the file.
<SuffixFileN>

Type of the file. Possible suffixes are: ASCii, BINary, DIRectory

<SizeFileN>

Size of the file in bytes.

Example: See "Working with Files and Directories" on page 379.

Usage: Query only

Manual operation: See "Directory, File List and File Name" on page 142

:MMEMory:CATalog:LENGth? <Path>

Returns the number of files in the current or in the specified directory.

Query parameters:

<Path> string

String parameter to specify the directory. If the directory is omitted, the command queries the content of the current directory,

queried with :MMEMory:CDIRectory command.

Return values:

<FileCount> integer

Number of files.

Example: See "Working with Files and Directories" on page 379.

Usage: Query only

:MMEMory:CDIRectory < Directory>

Changes the default directory for mass memory storage. The directory is used for all subsequent MMEM commands if no path is specified with them.

Parameters:

String containing the path to another directory. The path can be

relative or absolute.

To change to a higher directory, use two dots '..'.

Example: See "Working with Files and Directories" on page 379.

Usage: SCPI confirmed

Manual operation: See "Directory, File List and File Name" on page 142

:MMEMory:COPY <SourceFile>[,<DestinationFile>]

Copies an existing file to a new file. Instead of just a file, this command can also be used to copy a complete directory together with all its files.

Setting parameters:

<SourceFile> string

String containing the path and file name of the source file

<DestinationFile> string

String containing the path and name of the target file. The path

can be relative or absolute.

If <DestinationFile> is not specified, the <SourceFile> is copied to the current directory, queried with the :MMEMory:

CDIRectory command.

Note: Existing files with the same name in the destination direc-

tory are overwritten without an error message.

Example: See "Working with Files and Directories" on page 379.

Usage: Setting only

SCPI confirmed

Manual operation: See "Copy " on page 146

:MMEMory:DATA <Filename>, <BinaryBlock>

:MMEMory:DATA? <Filename>

The setting command writes the block data <BinaryBlock> to the file identified by <Filename>. Set the GPIB-bus terminator to EOI to ensure correct data transfer.

The query command transfers the specified file from the instrument to the GPIB-bus and then on to the controller. It is important to ensure that the intermediate memory on the controller is large enough to take the file. The setting for the GPIB-bus terminator is irrelevant.

Tip: Use this command to read/transfer stored instrument settings or waveforms directly from/to the instrument.

Parameters:

<BinaryBlock> #<number><length_entry><data>

#: Hash sign; always comes first in the binary block

<number>: the first digit indicates how many digits the subse-

quent length entry has

<length entry>: indicates the number of subsequent bytes

<data>: binary block data for the specified length.

For files with a size with more than 9 digits (Gigabytes) the instrument allows the syntax # (< Length>), where < Length>

is the file size in decimal format.

Parameters for setting and query:

<Filename> string

String parameter to specify the name of the file.

Example: MMEMory:DATA '/var/user/test.txt',#15hallo

Writes the block data to the file test.txt.

The digit 1 indicates a length entry of 1 digit; the digit 5 indicate

a length of the binary data (hallo) in bytes. MMEMory: DATA? '/var/user/test.txt'

sends the data of the file test.txt from the instrument to the

controller in the form of a binary block.

Response: #15hallo

Usage: SCPI confirmed

:MMEMory:DCATalog? <path>

Returns the subdirectories of a particular directory.

Query parameters:

<path> String parameter to specify the directory. If the directory is omit-

ted, the command queries the content of the current directory,

queried with :MMEMory:CDIRectory command.

Return values:

<Catalog> <file_entry>

Names of the subdirectories separated by colons. The first two

strings are related to the parent directory.

Example: See "Working with Files and Directories" on page 379.

Usage: Query only

:MMEMory:DCATalog:LENGth? [<Path>]

Returns the number of subdirectories in the current or specified directory.

Query parameters:

<Path> String parameter to specify the directory. If the directory is omit-

ted, the command queries the contents of the current directory,

to be queried with :MMEMory:CDIRectory command.

Return values:

<DirectoryCount> integer

Number of parent and subdirectories.

Example: See "Working with Files and Directories" on page 379.

Usage: Query only

:MMEMory:DELete <Filename>

Removes a file from the specified directory.

Setting parameters:

<Filename> string

String parameter to specify the name and directory of the file to

be removed.

Example: See "Working with Files and Directories" on page 379.

Usage: Event

SCPI confirmed

Manual operation: See "Cut" on page 146

:MEMory:HFRee?

Returns the used and available memory in Kb.

Return values:

<TotalPhysMemKb> integer

Total physical memory.

<ApplicMemKb> integer

Application memory.

<HeapUsedKb> integer

Used heap memory.

<HeapAvailableKb> integer

Available heap memory.

Usage: Query only

:MMEMory:LOAD:STATe <SavRclStateNumb>, <file_name>

Loads the specified file stored under the specified name in an internal memory.

After the file has been loaded, the instrument setting must be activated using an *RCL command.

Setting parameters:

<SavRclStateNumb> Determines to the specific <number> to be used with the *RCL

command, e.g. *RCL 4.

<file name> String parameter to specify the file name with extension

*.savrcltxt.

Example: See "Storing and Loading Current Settings" on page 378.

Usage: Setting only

Manual operation: See "Recall" on page 144

:MMEMory:MDIRectory < Directory>

Creates a subdirectory for mass memory storage in the specified directory. If no directory is specified, a subdirectory is created in the default directory. This command can also be used to create a directory tree.

Setting parameters:

<Directory> string

String parameter to specify the new directory.

Example: See "Working with Files and Directories" on page 379.

Usage: Event

Manual operation: See "Create New Directory" on page 147

:MMEMory:MOVE <SourceFile>, <DestinationFile>

Moves an existing file to a new location or, if no path is specified, renames an existing file

Setting parameters:

<SourceFile> string

String parameter to specify the name of the file to be moved.

<DestinationFile> string

String parameters to specify the name of the new file.

Example: See "Working with Files and Directories" on page 379.

Usage: Event

SCPI confirmed

Manual operation: See "Rename" on page 146

:MMEMory:MSIS <Msis>

Defines the drive or network resource (in the case of networks) for instruments with windows operating system, using msis (MSIS = Mass Storage Identification String).

Note: Instruments with Linux operating system ignore this command, since Linux does not use drive letter assignment.

Usage: SCPI confirmed

:MMEMory:RDIRectory < Directory>

Removes an existing directory from the mass memory storage system. If no directory is specified, the subdirectory with the specified name is deleted in the default directory.

Setting parameters:

<Directory> string

String parameter to specify the directory to be deleted.

Example: See "Working with Files and Directories" on page 379.

Usage: Event

:MMEMory:STORe:STATe <savrcl_state_nr>, <file_name>

Stores the current instrument setting in the specified file.

The instrument setting must first be stored in an internal memory with the same number using the common command *SAV.

Setting parameters:

command, e.g. *SAV 4.

<file_name> String parameter to specify the file name with extension

*.savrcltxt.

Example: See "Storing and Loading Current Settings" on page 378.

Usage: Event

Manual operation: See "Save" on page 143

OUTPut Subsystem

7.11 OUTPut Subsystem

The OUTPut system contains the commands which set the properties of the RF output connector.

The properties of the LF output connector are set in the SOURce:LFOutput Subsystem system.

| :OUTPut:ALL[:STATe] | 386 |
|---------------------------------------|-----|
| :OUTPut <hw>:AFIXed:RANGe:LOWer?</hw> | |
| :OUTPut <hw>:AFIXed:RANGe:UPPer?</hw> | 387 |
| :OUTPut <hw>:ALC:SEARch:MODE</hw> | 387 |
| :OUTPut <hw>:AMODe</hw> | 387 |
| :OUTPut:BLANk:MODE | 388 |
| :OUTPut:BLANk:POLarity | 388 |
| :OUTPut:BLANk:WIDTh | 388 |
| :OUTPut:FPRoportional:SCALe | 388 |
| :OUTPut <hw>[:STATe]</hw> | 389 |
| :OUTPut <hw>[:STATe]:PON</hw> | 389 |
| | |

:OUTPut:ALL[:STATe] <State>

Activates and deactivates all RF output signals of the instrument (RF ON / RF OFF).

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: OUTP:ALL OFF

switches off all RF output signals.

:OUTPut<hw>:AFIXed:RANGe:LOWer?

Queries the minimum level which can be set when the attenuator is fixed, see : OUTPut<hw>: AMODe.

Return values:

<Lower> float

Increment: 0.01

Example: OUTP:AFIX:RANG:LOW?

queries the minimum level for the FIXed setting.

Example: Response: -50

The minimum level is -50 dBm.

Usage: Query only

Manual operation: See "Fixed Range in (PEP): - Attenuation Settings" on page 178

OUTPut Subsystem

:OUTPut<hw>:AFIXed:RANGe:UPPer?

Queries the maximum level which can be set when the attenuator is fixed, see : OUTPut<hw>: AMODe.

Return values:

<Upper> float

Increment: 0.01

Example: OUTP:AFIX:RANG:UPP?

queries the maximum level for the FIXed setting for the RF out-

put.

Example: Response: -27

The maximum level is -27 dBm.

Usage: Query only

Manual operation: See "Fixed Range in (PEP): - Attenuation Settings" on page 178

:OUTPut<hw>:ALC:SEARch:MODE < Mode>

Activates/deactivates the RF output during the power search.

Parameters:

<Mode> NORMal | MINimum

*RST: NORMal

Example: POW:ALC:SEAR:MODE NORM

during the power search, the RF output is active.

Manual operation: See "RF During Power Search - ALC" on page 196

:OUTPut<hw>:AMODe <AMode>

Selects the mode of the attenuator at the RF output (Attenuator MODe).

Parameters:

<AMode> AUTO | FIXed

AUTO

The mechanical switching attenuator switches in steps of 10 dB

at fixed points.

FIXed

The level settings are made without switching the attenuator or the relays. When this operating mode is switched on, the attenuator and the relays are fixed in their current positions and the

resulting variation range is defined.

*RST: AUTO

Example: POW:ALC ON

activates automatic level control for RF output.

OUTP:AMOD FIX

sets the fixed mode with uninterrupted level for RF output.

OUTPut Subsystem

Manual operation: See "Mode – Attenuator Settings" on page 178

:OUTPut:BLANk:MODE < Mode>

The command selects the RF blanking method for sweeps with step widths less than 10 MHz.

Parameters:

<Mode> OFF | AUTO | ON

*RST: AUTO

Example: OUTP:BLAN:MODE AUTO

blanking is performed only when the step synthesizer switches

to the next step.

Manual operation: See "RF Blanking" on page 122

:OUTPut:BLANk:POLarity < Polarity>

The command sets the polarity of the No Signal (Blank) Marker.

Parameters:

<Polarity> NORMal | INVerted

*RST: NORMal

Example: OUTP:BLAN:POL NORM

Manual operation: See "Blank Polarity" on page 122

:OUTPut:BLANk:WIDTh <Width>

The command selects the width of the blank marker.

Parameters:

<Width> RFBLank | TRIGrf

RFBLanking

The blank marker starts after the external sweep trigger signal.

TRIGrf

The blank marker starts already with the external sweep trigger

signal.

*RST: RFBL

Example: OUTP:BLAN:MODE RFBL

the blank marker starts after the trigger signal.

Manual operation: See "Blank Width" on page 122

:OUTPut:FPRoportional:SCALe <Scale>

The command selects the V/GHz ratio for the output.

Parameters:

<Scale> S0V5 | S1V0

*RST: S1V0

Example: OUTP:FPR:SCAL SOV5

sets the V/GHz ratio for the output to 0.5.

Manual operation: See "V/GHz" on page 121

:OUTPut<hw>[:STATe] <State>

Activates and deactivates the RF output signal (RF ON / RF OFF).

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: OUTP OFF

deactivates the RF output.

Manual operation: See "RF On" on page 150

:OUTPut<hw>[:STATe]:PON <Pon>

Selects the state of the RF output when the instrument is switched on.

Parameters:

<Pon> OFF | UNCHanged

OFF

deactivates the output when the instrument is switched on (RF

OFF).

UNCHanged

sets the output status as it was when the instrument was

switched off.

*RST: UNCHanged

Example: OUTP:PON OFF

RF output A is deactivated when the instrument is switched on.

Manual operation: See "Power-On State - RF Signal" on page 186

7.12 Power Sensor Measurement Subsystems

The power sensor measurement uses several subsystems:

- The CALCulate subsystem is used to configure the time gated measurements in power analysis.
- The DISPlay subsystem is used to configure the diagram appearance.
- The INITiate command switches the local state of the continuous power measurement on and off.

- The READ system is used to start and to retrieve the measurement result of the power viewer measurement.
- The SENSe subsystem contains the commands for configuring the power viewer and power analysis measurements with power sensors connected to the generator.
 Up to three sensors can be connected to the signal generator.
- The TRACe subsystem is used to configure the traces in power analysis and to retrieve the measurement results.

Power Viewer

The power viewer measurement is started with the READ command, this command also retrieves the measurement results.

The sensors are distinguished by means of the suffix under SENSe:

- Power sensor connected to the SENSOR port = SENSe[1]
- First Power sensor connected to the USB interface = SENSe2
- Second Power sensor connected to the USB interface = SENSe3

Third Power sensor connected to the USB interface = SENSe4

Power and Pulse Data Analysis, Gated Measurements (option R&S SMF-K28)

Pulse data analysis in time measurement mode is available with power sensors R&S NRP-Z81.

The power analysis measurement commands are subsumed under the SENSe[:POWer]:SWEep:... commands. Three measurement modes are available: Frequency, Power and Time.

The power analysis measurement is started with the SENSe[:POWer]:SWEep:INITiate command and the measurement result retrieved with the TRACe[:POWer]:SWEep:... commands.

The four sensors are distinguished by means of the suffix at the second key word ${\tt SENSe.}$

The time gate settings are performed using the CALCulate[:POWer]:SWEep:... commands.

The measurement diagram and results can be stored in a hardcopy with the SENSe[:POWer]:SWEep:HCOPy:... commands.

General parameter and measurement settings are valid for all connected sensors, therefore. no suffix is used in these commands.

7.12.1 CALCulate Subsystem

| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:AVERage?</ch> | 391 |
|---|-----|
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:FEED</ch> | 391 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:MAXimum?</ch> | 392 |

| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STOP</ch> | 392 |
|--|-----|
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STARt</ch> | |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STATe</ch> | 392 |
| :CALCulate[:POWer]:SWEep:FREQuency:MATH <ch>:STATe</ch> | 393 |
| :CALCulate[:POWer]:SWEep:FREQuency:MATH <ch>:SUBTract</ch> | 393 |
| :CALCulate[:POWer]:SWEep:POWer:MATH <ch>:STATe</ch> | 393 |
| :CALCulate[:POWer]:SWEep:POWer:MATH <ch>:SUBTract</ch> | 394 |
| :CALCulate[:POWer]:SWEep:TIME:MATH <ch>:STATe</ch> | 394 |
| :CALCulate[:POWer]:SWEep:TIME:MATH <ch>:SUBTract</ch> | 394 |

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:AVERage?

Queries the average power value of the time gated measurement.

Return values:

<Average> float

Range: -1000 to 1000

Increment: 1E-12 *RST: 0

Example: SENS:SWE:MODE TIME

activates time mode for power analysis. CALC: SWE: TIME: GATE: STAT ON activates time gated measurement.

SENS:SWE:INIT

activates a single power analysis measurement.

CALC: SWE: TIME: GATE2: AVER?

queries the average power in time gate 2 for trace 1 (=default).

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "State - Gate" on page 227

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:FEED <Feed>

Selects the trace for time gated measurement. Both gates are assigned to the same trace.

Parameters:

<Feed> TRAC1 | TRAC2 | TRAC3 | TRACe1 | TRACe2 | TRACe3 |

TRAC4 | TRACe4

*RST: TRAC1

Example: CALC:SWE:TIME:GATE:FEED TRAC2

assignes the gates to trace 2.

Options: Option R&S SMF-K28

Manual operation: See "Trace - Gate" on page 227

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:MAXimum?

Queries the average power value of the time gated measurement.

Return values:

<Maximum> float

Range: -1000 to 1000

Increment: 1E-12 *RST: 0

Example: SENS:SWE:MODE TIME

activates time mode for power analysis. CALC: SWE: TIME: GATE: STAT ON activates time gated measurement.

SENS: SWE: INIT

activates a single power analysis measurement.

CALC:SWE:TIME:GATE2:MAX?

queries the peak power in time gate 2 for trace 1 (=default).

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "State - Gate" on page 227

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STOP <Stop>
:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STARt <Start>

Sets the start time of the selected gate. Insert value and unit.

Parameters:

<Start> float

Increment: 1E-12

*RST: Start/Stop: 5/15 (Gate1), 25/35 (Gate2)

Example: CALC:SWE:TIME:GATE2:STAR 20us

sets a start time of 20 us for gate 2.

Example: CALC:SWE:TIME:GATE2:STOP 30us

sets a stop time of 30us for gate 2.

Options: Option R&S SMF-K28

Manual operation: See "Start / Stop - Gate" on page 228

:CALCulate[:POWer]:SWEep:TIME:GATE<ch>:STATe <State>

Activates the gate settings for the selected trace. The measurement ist started with command SENS: POW: INIT. Both gates are active at one time.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: CALC:SWE:TIME:GATE:STAT ON

'enables time gated measurement.

Options: Option R&S SMF-K28

Manual operation: See "State - Gate" on page 227

:CALCulate[:POWer]:SWEep:FREQuency:MATH<ch>:STATe <State>

Activates the trace mathematics mode for "Frequency" measurement. This feature enables to calculate the difference between the measurement values of two traces. Additionally, for further calculation a math result can also be assigned to a trace.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: CALC: POW: SWE: FREQ: MATH2: STATe

Example: switches on math mode in trace 2.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

:CALCulate[:POWer]:SWEep:FREQuency:MATH<ch>:SUBTract <Subtract>

Subtracts the operands 1 and 2 and assigns the result to the selected trace in "Frequency" measurement mode.

Parameters:

T2REf | T3T1 | T3T2 | T3T3 | T3T4 | T3REf | T4T1 | T4T2 |

T4T3 | T4T4 | T4REf

Example: CALC:POW:SWE:FREQ:MATH4:SUBT T2REF

Example: Subtracts the **Reference** and **Trace 2**, and assigns the result to

Trace 4. The resulting curve is shown in the diagram.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

:CALCulate[:POWer]:SWEep:POWer:MATH<ch>:STATe <State>

Activates the trace mathematics mode for "Power" measurement. This feature enables to calculate the difference between the measurement values of two traces. Additionally, for further calculation a math result can also be assigned to a trace.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: CALC: POW: SWE: POW: MATH2: STATE

Example: switches on math mode in trace 2.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

:CALCulate[:POWer]:SWEep:POWer:MATH<ch>:SUBTract <Subtract>

Subtracts the operands 1 and 2 and assigns the result to the selected trace in "Power" measurement mode.

Parameters:

T2REf | T3T1 | T3T2 | T3T3 | T3T4 | T3REf | T4T1 | T4T2 |

T4T3 | T4T4 | T4REf

Example: CALC:POW:SWE:POW:MATH4:SUBT T2REF

Example: Subtracts the **Reference** and **Trace 2**, and assigns the result to

Trace 4. The resulting curve is shown in the diagram.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

:CALCulate[:POWer]:SWEep:TIME:MATH<ch>:STATe <State>

Activates the trace mathematics mode for "Time" measurement. This feature enables to calculate the difference between the measurement values of two traces. Additionally, for further calculation a math result can also be assigned to a trace.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: CALC:POW:SWE:TIME:MATH1:STATe

Example: switches on math mode.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

:CALCulate[:POWer]:SWEep:TIME:MATH<ch>:SUBTract <Subtract>

Substracts the operands 1 and 2 and assigns the result to the selected trace in "Time" measurement mode.

Parameters:

T2REf | T3T1 | T3T2 | T3T3 | T3T4 | T3REf | T4T1 | T4T2 |

T4T3 | T4T4 | T4REf

Example: CALC:POW:SWE:TIME:MATH4:SUBT T2REF

Example: Subtracts the **Reference** and **Trace 2**, and assigns the result to

Trace 4. The resulting curve is shown in the diagram.

Options: R&S SMF-K28

Manual operation: See "Mathematics - Trace Power Analysis" on page 218

7.12.2 DISPlay Subsystem

| :DISPlay[:WINDow][:POWer]:SWEep:BACKground:COLor | 395 |
|--|-----|
| :DISPlay[:WINDow][:POWer]:SWEep:GRID:STATe | 395 |

:DISPlay[:WINDow][:POWer]:SWEep:BACKground:COLor <Color>

Defines the background color of the measurement diagram. The selected color applies also to the hardcopy of the diagram.

Parameters:

<Color> BLACk | WHITe

*RST: BLACk

Example: DISP:SWE:BACK:COL WHIT

the measurement is indicated with a white background.

Manual operation: See "Bg Color - Power Analysis" on page 224

:DISPlay[:WINDow][:POWer]:SWEep:GRID:STATe <State>

Indacates a grid in the diagram.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: DISP:SWE:GRID:STAT OFF

deactivates the indication of a grid in the diagram area.

Manual operation: See "Grid - Power Analysis" on page 223

7.12.3 INITiate Command

:INITiate<ch>[:POWer]:CONTinuous < Continuous>

The command switches the local state of the continuous power measurement by the R&S NRP-Zxx power sensors on and off. Switching the local state off enhances the measurement performance during remote control

The remote measurement is triggered by the READ query (command :READ<ch>[:POWer]? on page 396) which also provides the measurement results. The local state is not influenced by this command, measurements results can be retrieved with local state on or off.

Parameters:

<Continuous> 0 | 1 | OFF | ON

*RST: OFF

Example: INIT: CONT ON

switches local state of continuous power measurement on.

Manual operation: See "State" on page 200

7.12.4 READ Subsystem

:READ<ch>[:POWer]?

The command triggers the measurement with power sensors and provides the power measurement result of the selected power sensor. The value is provided with the unit set with command SENSe:UNIT[::POWer].

For certain power sensors, e.g. R&S NRP-Z81, two values are returned, first the value for the average level and - separated by a comma - the peak level

Note: The local state is not influenced by this command, measurements results can be retrieved with local state on or off. For long measurement times it is recommended to use a SRQ (MAV bit) for command synchronization.

Suffix:

<ch> 1..3

Return values:

<Power> string

Example: SENS:UNIT DBM

selects unit dBm for presentation of measurement result.

READ1?

queries the measurement result of the sensor connected to the

SENSOR interface.

Response: -45.6246576745440230

-45.6 dBm were measured at the given frequency.

or e.g. for R&S NRP-Z81

Response:

-55.62403263352178, -22.419472478812476

-55,6 dbm is the measured average level, -22. 4 dBm is the

measured peak level at the given frequency

Usage: Query only

Manual operation: See "Level (Peak)" on page 200

7.12.5 SENSe Subsystem

| :SENSe <ch>[:POWer]:APERture:DEFault:STATe</ch> | 399 |
|--|-----|
| :SENSe <ch>[:POWer]:APERture:TIMe</ch> | 399 |
| :SENSe <ch>[:POWer]:CORRection:SPDevice:STATe</ch> | 399 |

| :SENSe <ch>[:POWer]:DISPlay:PERManent:PRlority</ch> | 400 |
|--|-----|
| :SENSe <ch>[:POWer]:DISPlay:PERManent:STATe</ch> | |
| :SENSe <ch>[:POWer]:FILTer:LENGth:AUTO?</ch> | 400 |
| :SENSe <ch>[:POWer]:FILTer:LENGth[:USER]</ch> | 401 |
| :SENSe <ch>[:POWer]:FILTer:NSRatio</ch> | 401 |
| :SENSe <ch>[:POWer]:FILTer:NSRatio:MTIMe</ch> | 402 |
| :SENSe <ch>[:POWer]:FILTer:SONCe</ch> | 402 |
| :SENSe <ch>[:POWer]:FILTer:TYPE</ch> | 402 |
| :SENSe <ch>[:POWer]:FREQuency</ch> | 403 |
| :SENSe <ch>[:POWer]:LOGGing:STATe</ch> | 403 |
| :SENSe <ch>[:POWer]:OFFSet</ch> | 404 |
| :SENSe <ch>[:POWer]:OFFSet:STATe</ch> | 404 |
| SENSe <ch>[:POWer]:SNUMber?</ch> | 404 |
| :SENSe <ch>[:POWer]:SOURce</ch> | |
| SENSe <ch>[:POWer]:STATus[:DEVice]?</ch> | 405 |
| SENSe <ch>[:POWer]:SVERsion?</ch> | 405 |
| :SENSe[:POWer]:SWEep:ABORt | 406 |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:COPY | 406 |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:POINts? | 406 |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:XVALues | 406 |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:YVALues | 407 |
| :SENSe[:POWer]:SWEep:FREQuency:RMODe | |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet</ch> | 407 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet:STATe</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge[:STATe]</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STARt</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STOP</ch> | 409 |
| :SENSe[:POWer]:SWEep:FREQuency:SPACing[:MODE] | 409 |
| :SENSe[:POWer]:SWEep:FREQuency:STARt | 409 |
| :SENSe[:POWer]:SWEep:FREQuency:STEPs | |
| :SENSe[:POWer]:SWEep:FREQuency:STOP | |
| :SENSe[:POWer]:SWEep:FREQuency:TIMing[:MODE] | |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO | |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO:RESet | |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:MAXimum | |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:MINimum | 412 |
| :SENSe[:POWer]:SWEep:HCOPy:DATA? | 413 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice | |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage | 414 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:DPOint | 414 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:HEADer | 415 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:ORIentation | 415 |
| : SENSe[:POWer]: SWEep: HCOPy: DEVice: LANGuage: CSV[:COLumn]: SEParator | 415 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:SIZE | |
| :SENSe[:POWer]:SWEep:HCOPy[:EXECute] | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME] | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:FILE? | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY? | 418 |

| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh? | 419 |
|--|---|
| OLIVOCITI OVVCIJ. OVVCOP. 11001 Y. 1122[V.WIL]. NO 10[.1122]. WOIVITE | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer? | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix | |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe | 420 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR? | 420 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe | 421 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:STATe | |
| :SENSe[:POWer]:SWEep:INITiate | |
| :SENSe[:POWer]:SWEep:MODE | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:COPY | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:POINts? | |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:XVALues | |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:YVALues | |
| :SENSe[:POWer]:SWEep:POWer:RMODe | |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet</ch> | 423 |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet:STATe</ch> | |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency</ch> | |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency:STATe</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet:STATe</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:STATe</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:BASE</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:HREFerence</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:REFerence</ch> | |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:LREFerence</ch> | |
| | |
| :SENSe[:POWer]:SWEep:POWer:SPACing[:MODE] | 427 |
| :SENSe[:POWer]:SWEep:POWer:SPACing[:MODE]:SENSe[:POWer]:SWEep:POWer:STARt | |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427 |
| :SENSe[:POWer]:SWEep:POWer:STARt:SENSe[:POWer]:SWEep:POWer:STEPs | 427
428 |
| :SENSe[:POWer]:SWEep:POWer:STARt:
:SENSe[:POWer]:SWEep:POWer:STEPs:
:SENSe[:POWer]:SWEep:POWer:STOP | 427
428
428 |
| :SENSe[:POWer]:SWEep:POWer:STARt:SENSe[:POWer]:SWEep:POWer:STEPs | 427
428
428
428 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427
428
428
428
429 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427
428
428
429
429 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427
428
428
428
429
430 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427
428
428
429
429
430 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe | 427
428
428
429
429
430
430 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe | 427
428
428
429
429
430
430 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe | 427
428
428
429
430
430
431 |
| :SENSe[:POWer]:SWEep:POWer:STARt. :SENSe[:POWer]:SWEep:POWer:STEPs. :SENSe[:POWer]:SWEep:POWer:STOP. :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE]. :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO. :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet. :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum. :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum. :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum. :SENSe[:POWer]:SWEep:TIME:RMODe. :SENSe[:POWer]:SWEep:TIME:RMODe. :SENSe[:POWer]:SWEep:TIME:RMODe. :SENSe[:POWer]:SWEep:TIME:RMODE. | 427
428
428
429
430
430
431
431 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427
428
428
429
430
430
431
431
431 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:POINts? :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:XVALues | 427
428
428
429
430
430
431
431
431 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427428428429430430431431431432 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427428428429430431431431432432 |
| :SENSe[:POWer]:SWEep:POWer:STARt. :SENSe[:POWer]:SWEep:POWer:STEPs. :SENSe[:POWer]:SWEep:POWer:STOP. :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE]. :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO. :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet. :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum. :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum. :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum. :SENSe[:POWer]:SWEep:TIME:RMODe. :SENSe[:POWer]:SWEep:TIME:RMODe. :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt]. :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY. :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues. :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues. :SENSe(:POWer]:SWEep:TIME:REFerence:DATA:YVALues. :SENSe | 427428428429430431431431432432 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE]. :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt]. :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:VALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe(:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe | 427428429430430431431431432432432 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency:STATe :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:AUTO :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:DTIMe</ch></ch></ch></ch> | 427428429430430431431431432432433433 |
| :SENSe[:POWer]:SWEep:POWer:STARt :SENSe[:POWer]:SWEep:POWer:STEPs :SENSe[:POWer]:SWEep:POWer:STOP :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO.RESet :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:RMODe :SENSe[:POWer]:SWEep:TIME:RMODe :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:AUTO</ch></ch></ch></ch> | 427428429430431431431432432433433 |

| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SOURce</ch> | 435 |
|---|-----|
| :SENSe[:POWer]:SWEep:TIME:SPACing[:MODE] | 435 |
| :SENSe[:POWer]:SWEep:TIME:STARt | 435 |
| :SENSe[:POWer]:SWEep:TIME:STEPs | 436 |
| :SENSe[:POWer]:SWEep:TIME:STOP | 436 |
| :SENSe[:POWer]:SWEep:TIME:TEVents | 436 |
| :SENSe[:POWer]:SWEep:TIME:YSCale:AUTO | |
| :SENSe[:POWer]:SWEep:TIME:YSCale:AUTO:RESet | |
| :SENSe[:POWer]:SWEep:TIME:YSCale:MAXimum | |
| :SENSe[:POWer]:SWEep:TIME:YSCale:MINimum | |
| SENSe <ch>[:POWer]:TYPE?</ch> | |
| :SENSe <ch>[:POWer]:ZERO</ch> | |
| :SENSe <ch>:UNIT[:POWer]</ch> | |

:SENSe<ch>[:POWer]:APERture:DEFault:STATe <UseDefAp>

Deactivates the default aperture time of the respective sensor.

To specify a user-defined value, use the command :SENSe<ch>[:POWer]: APERture:TIMe on page 399.

Parameters:

<UseDefAp> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:POW:APER:DEF:STAT 0

deactivates the default aperture time of the sensor.

Manual operation: See "Use Default Aperture Time" on page 204

:SENSe<ch>[:POWer]:APERture:TIMe <ApTime>

Defines the aperture time (size of the acquisition interval) for the corresponding sensor.

Parameters:

<ApTime> float

Range: depends on connected power sensor to depends

on connected power sensor

Increment: 1E-9

*RST: depends on connected power sensor

Example: SENS:POW:APER:TIM 23ms

sets 23 ms aperture time.

Manual operation: See "Aperture Time" on page 204

:SENSe<ch>[:POWer]:CORRection:SPDevice:STATe <State>

The command activates the use of the s-parameters correction data of the selected power sensor.

Note: For power sensor with attenuator this command is automatically set to ON.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: OFF

Example: SENS:POW:CORR:SPD:STAT ON

activates the use of the s-parameters correction data of power

sensor 1.

Manual operation: See "Use SParameter - Power Sensors" on page 204

:SENSe<ch>[:POWer]:DISPlay:PERManent:PRlority < Priority>

The command selects which power measurement result (average or peak power) is indicated when permanent display is active.

Parameters:

<Priority> AVERage | PEAK

*RST: PEAK

Example: SENS1:DISP:PERM:STAT ON

the permanent viewer is switched on. SENS1:DISP:PERM:PRI AVER

the measured average power is indicated.

Manual operation: See "Display Priority" on page 201

:SENSe<ch>[:POWer]:DISPlay:PERManent:STATe <State>

The command switches on and off the permanent indication of the power measurement result in the upper right corner of the block diagram. For each sensor, the type of sensor, the connector, the measurement source and - if set - the offset is indicated.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: ON

Example: SENS1:POW:DISP:PERM:STAT ON

the permanent viewer is switched on.

Manual operation: See "Permanent Display State" on page 201

:SENSe<ch>[:POWer]:FILTer:LENGth:AUTO?

The command queries the current filter length for auto filter mode

(:SENSe<[1]...3>:POWer:FILTer:TYPE AUTO)

Return values:

<Auto> float

Range: 1 to 65536

Example: SENS1:FILT:TYPE AUTO

selects auto filter mode for the power sensor connected to the

SENSOR connector.

SENS1:FILT:LENG:AUTO?

queries the automatically set filter length.

Response: 1024

Usage: Query only

Manual operation: See "Filter Length" on page 203

:SENSe<ch>[:POWer]:FILTer:LENGth[:USER] <User>

The command selects the filter length for user filter mode (SENSe: POWer: FILTer: TYPE USER). As the filter length works as a multiplier for the time window, a constant filter length results in a constant measurement time. Values 1 and 2ⁿ are settable.

The time window is fixed to 20 ms.

Parameters:

<User> float

Range: 1 to 65536

*RST:

Example: SENS:FILT:TYPE USER

selects user filter mode.
SENS:FILT:LENG 16

sets a filter length of 16. The resulting measurement time is 640

ms (2x16x20 ms).

Manual operation: See "Filter Length" on page 203

:SENSe<ch>[:POWer]:FILTer:NSRatio < NSRatio>

The command defines the noise content for fixed noise filter mode (:SENSe<[1]...3>:POWer:FILTer:TYPE NSRatio). This value determines the proportion of intrinsic noise in the measured result.

Parameters:

<NSRatio> float

Range: 0.001 to 1 Increment: 0.001 *RST: 0.01

Example: SENS1:FILT:TYPE NSR

selects fixed noise filter mode for the power sensor connected to

the SENSOR connector.

SENS1:FILT:NSR 0.2

sets a noise content of 0.2.

Manual operation: See "Noise Content" on page 203

:SENSe<ch>[:POWer]:FILTer:NSRatio:MTIMe <MTime>

The command defines the timeout for fixed noise filter mode

(:SENSe<[1]...3>:POWer:FILTer:TYPE NSRatio). This value ensures limited settling times.

Parameters:

<MTime> float

Range: 1 to 999.99

Increment: 0.01 *RST: 4 Default unit: s

Example: SENS1:FILT:TYPE NSR

selects fixed noise filter mode for the power sensor connected to

the SENSOR connector.

SENS1:FILT:NSR .2

sets a noise content of 0.2.

SENS1:FILT:NSR:MTIM 5

limits the settling time to 5 seconds

Manual operation: See "Timeout" on page 204

:SENSe<ch>[:POWer]:FILTer:SONCe

The command activates the search for the optimum filter length for the current measurement conditions. The found filter length can be retrieved with com-

mand: SENSe: POWer: FILTer: LENGth: USER?. This command is only available for user filter mode (: SENSe: POWer: FILTer: TYPE USER).

Example: SENS:FILT:TYPE USER

selects user filter mode.
SENS:FILT:SONC

activates the search for the optimum filter length.

SENS:FILT:LENG?

returns the found optimum filter length.

Response: 128

Usage: Event

Manual operation: See "Auto Once" on page 204

:SENSe<ch>[:POWer]:FILTer:TYPE <Type>

The command selects the filter mode. The filter length is the multiplier for the time window and thus directly influences the measurement time.

Parameters:

<Type> AUTO | USER | NSRatio

AUTO

The filter length is automatically selected depending on the measured value. For high values, a short filter length is selected and for low values a long filter length is selected.

USER

The filter length is set manually. As the filter length works as a multiplier for the measurement time, this results in a constant measurement time.

NSRatio

The filter lenghth (averaging factor) is selected so that the sensor's intrinsic noise (2 standard deviations) does not exceed the specified noise content. The desired noise content is entered with command SENSe:FILTer:NSRatio.

To avoid very long settling times when the power is low, the averaging factor can be limited with the Timeout parameter

(command SENSe:FILTer:NSRatio:MTIMe).

*RST: AUTO

Example: SENS:FILT:TYPE AUTO

selects automatic filter selection.

Manual operation: See "Filter" on page 202

:SENSe<ch>[:POWer]:FREQuency <Frequency>

The command sets the RF frequency of the source if the user source is selected (SENSe[:POWer]:SOURCE USER).

Parameters:

<Frequency> float

*RST: 1 GHz

Example: SENS:SOUR USER

selects user-defined source. SENS:FREQ 2.44 GHz

enters the RF frequency of the source which is 2.44 GHz.

Manual operation: See "Frequency" on page 202

:SENSe<ch>[:POWer]:LOGGing:STATe <State>

Activates the recording of the power values, measured by a connected R&S NRP-Z power sensor.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS:LOGG:STAT ON

activates recording of the power measurement of the first sen-

sor.

Manual operation: See "Enable Logging" on page 204

:SENSe<ch>[:POWer]:OFFSet <Offset>

The command enters a level offset which is added to the measured level value after activation with command <code>SENSe[:POWer]:OFFSet:STATe ON.</code> This allows e.g. an attenuator in the signal path to be considered.

Parameters:

<Offset> float

Range: -100.0 to 100.0

*RST: 0
Default unit: dB

Example: SENS:POW:OFFS 10.0

sets a level offset of 10 dB

Manual operation: See "Level Offset" on page 202

:SENSe<ch>[:POWer]:OFFSet:STATe <State>

The command activates the addition of the level offset to the measured value. The level offset value is set with command <code>SENSe[:POWer]:OFFSet</code>.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: OFF

Example: SENS1:POW:OFFS 0.4dB

sets a level offset of 0.4 dB
SENS1:POW:OFFS:STAT ON

a level offset of 0.4 dB is added to the measured value.

Manual operation: See "Level Offset" on page 202

SENSe<ch>[:POWer]:SNUMber?

The command queries the serial number of the sensor.

Return values:

<Snumber> string

Example: SENS: SNUM?

queries the serial number.

Usage: Query only

Manual operation: See "Current Sensors" on page 112

:SENSe<ch>[:POWer]:SOURce <Source>

The command selects the signal source for the measurement.

Parameters:

<Source> A | B | USER | RF

*RST: A

Example: SENS:SOUR A

selects the RF signal as measurement source. The RF frequency is used as the measurement frequency of the sensor and the corresponding correction factor is used. The level setting of the instrument serves as reference level of the measure-

ment.

Manual operation: See "Source" on page 202

SENSe<ch>[:POWer]:STATus[:DEVice]?

The command queries if a sensor is connected to the signal generator.

The sensor is selected by suffix in the keyword SENSe or READ of the command header. Suffix 1 denotes the sensor connected to the SENSOR connector, suffix 2 the sensor connected first to one of the USB interfaces and suffix 3 the sensor connected second to one of the USB interfaces.

Return values:

<DEVice> 0 | 1 | OFF | ON

Example: SENS:STAT?

queries if a sensor is connected to the instrument.

Response: 1

a sensor is connected to the POWER SENSOR interface.

Usage: Query only

Manual operation: See "Sensor" on page 199

SENSe<ch>[:POWer]:SVERsion?

The command queries the software version of the connected R&S NRP power sensor.

Return values:

<Sversion> string

Example: SENS: POW: SVER?

queries the software version of the R&S NRP power sensor.

Usage: Query only

Manual operation: See "Current Sensors" on page 112

:SENSe[:POWer]:SWEep:ABORt

Aborts the power analysis with NRP power sensors.

Example: SENS:SWE:ABOR; *OPC?

aborts the current power measurement.

Usage: Setting only

Options: Option R&S SMF-K28

:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:COPY

Generates a reference curve for "Frequency" measurement.

Example: SENS:POW:SWE:FREQ:REF:DATA:COPY

Example: generates a reference curve in frequency mode.

Usage: Event

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:POINts?

Queries the number of points from the reference curve in "Frequency" measurement.

Return values:

<Points> integer

Range: 10 to 1000

Example: SENS:POW:SWE:FREQ:REF:DATA:POIN?

Example: queries the number of points from the reference curve in fre-

quency mode.

Usage: Query only

:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:XVALues <XValues>

Sets or queries the x values of the two reference points, i.e. "Frequency X (Point A)" and "Frequency X (Point B)" in "Frequency" measurement.

Parameters:

<XValues> string

Example: SENSe:POW:SWE:FREQ:REF:DATA:XVAL 100MHZ,22GHZ

Example: sets the x value of reference "Point A" to 10 MHz, and the value

of "Point B" to 10 GHz.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:YVALues <YValues>

Sets or queries the y values of the two reference points, i.e. "Pow Y (Point A)" and "Power Y (Point B)" in "Frequency" measurement.

Parameters:

<YValues> string

Example: SENSe:POW:SWE:FREQ:REF:DATA:YVAL -10,25

Example: sets the y value of reference "Point A" to -10 dBm, and the value

of "Point B" to -25 dBm.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:FREQuency:RMODe <RMode>

Selects single or continuous mode for measurement mode frequency in power analysis.

Parameters:

<RMode> SINGle | CONTinuous

*RST: CONTinuous

Example: SENS:SWE:FREQ:RMOD SING

selects single measurement

Options: Option R&S SMF-K28

Manual operation: See "Execution - Power Analysis" on page 222

:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet <Offset>

Defines the level offset at the sensor input in dB. Activate the offset with the command :SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet:STATe.

Parameters:

<Offset> float

Range: -100 to 100

Increment: 0.01 *RST: 0

Example: SENS2:SWE:FREQ:OFFS -3dB

defines a level offset of -3 dB.

SENS2: SWE: FREQ: OFFS: STAT ON activates the specified level offset.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset - Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet:STATe <State>

Activates a level offset at the sensor input. Define the appropriate value with the command :SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS2:SWE:FREQ:OFFS:STAT ON

activates the specified level offset.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset State- Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge[:STATe] <State>

Activates the use of a frequency range for the power measurement that is different to the set signal generator frequency range. The separate frequency range is entered with commands SENS:SWE:FREQ:SENS:STAR and SENS:SWE:FREQ:SENS:STOP.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS2:SWE:FREQ:SENS:SRAN ON

activates use of a separate frequency range for frequency ver-

sus power measurement for sensor 2. SENS2:SWE:FREQ:SENS:STAR 2.0GHZ

sets a sweep start at 2 GHz irrespective of the current signal

generator frequency settings.

SENS2:SWE:FREQ:SENS:STOP 2.9GHZ

sets a sweep stop at 2.9 GHz irrespective of the current signal

generator frequency settings.

Options: Option R&S SMF-K28

Manual operation: See "Use Separate Frequency- Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STARt <Start>

Sets the start frequency for the frequency power analysis with separate frequencies.

Parameters:

<Start> integer

Range: 0 to 1E12 *RST: 1E6

Example: SENS2:SWE:FREQ:SENS:SRAN:STAT ON

activates use of a separate frequency range for frequency ver-

sus power measurement for sensor 2.
SENS2:SWE:FREQ:SENS:STAR 2.0GHZ

sets a sweep start at 2 GHz irrespective of the current signal

generator frequency settings.

Options: R&S SMF-K28

Manual operation: See "Min Frequency - Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STOP <Stop>

Sets the stop frequency for the frequency power analysis with separate frequencies.

Parameters:

<Stop> integer

Range: 0 to 1E12 *RST: 10E6

Example: SENS:SWE:FREQ:SENS2:SRAN:STAT ON

activates use of a separate frequency range for frequency ver-

sus power measurement.

SENS:SWE:FREQ:SENS2:STAR 2.0GHZ

sets a sweep start at 2 GHz irrespective of the current signal

generator frequency settings.

SENS:SWE:FREQ:SENS2:STOP 2.9GHZ

sets a sweep stop at 2.9 GHz irrespective of the current signal

generator frequency settings.

Options: Option R&S SMF-K28

Manual operation: See "Max Frequency - Power Analysis" on page 231

:SENSe[:POWer]:SWEep:FREQuency:SPACing[:MODE] <Mode>

Selects the spacing for the frequency power analysis.

Parameters:

<Mode> LINear | LOGarithmic

*RST: LINear

Example: SENS:SWE:FREQ:SPAC:MODE LIN

sets linear spacing of the sweep

Options: Option R&S SMF-K28

Manual operation: See "Spacing - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:FREQuency:STARt <Start>

Sets the start frequency for the frequency mode.

Parameters:

<Start> float

Range: 0 to 1E12

*RST: 1E6

Example: SENS:SWE:FREQ:STAR 2.0GHZ

'sets a sweep start at 2 GHz.

Options: Option R&S SMF-K28

Manual operation: See "Min - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:FREQuency:STEPs <Steps>

Sets the number of measurement steps for the frequency mode.

Parameters:

<Steps> integer

Range: 10 to 1000

*RST: 200

Example: SENS:SWE:FREQ:STEP 500

sets 500 steps

Options: Option R&S SMF-K28

Manual operation: See "Steps - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:FREQuency:STOP <Stop>

Sets the stop frequency for the frequency mode.

Parameters:

<Stop> float

Range: 0 to 1E12 *RST: 22GHZ

Example: SENS:SWE:FREQ:STOP 20.0GHZ

sets the sweep stop to 20 GHz

Options: Option R&S SMF-K28

Manual operation: See "Max - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:FREQuency:TIMing[:MODE] <Mode>

Selects the mode in terms of speed and precision of the response of a measurement.

Parameters:

<Mode> FAST | NORMal | HPRecision

FAST

Selection FAST leads to a fast measurement with a short inte-

gration time for each measurement step.

NORMal

NORMal leads to a longer but more precise measurement due

to a higher integration time for each step.

*RST: FAST

Example: SENS:SWE:FREQ:TIM:MODE FAST

the fast measurement mode is selected.

Options: Option R&S SMF-K28

Manual operation: See "Timing - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO <Auto>

Activates autoscaling of the Y axis of the diagram.

Parameters:

<Auto> OFF | CEXPanding | FEXPanding | CFLoating | FFLoating

OFF

Auto scaling is deactivated. If switching from activated to deacti-

vated Auto scaling, the scaling is maintained.

CEXPanding | FEXPanding

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is expanded if the minimum or maximum values of the trace move outside the current scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selection fine.

selection fine.

CFLoating | FFLoating

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is either expanded if the minimum or maximum values of the trace move outside the current scale or scaled down if the trace fits into a reduced scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selec-

tion fine.

*RST: CEXPanding

Example: SENS:SWE:FREQ:YSC:AUTO OFF

deactivates auto scale

Options: Option R&S SMF-K28

Manual operation: See "Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO:RESet

Resets the Y scale to suitable values after the use of auto scaling in the expanding mode. For this mode, the scale might get expanded because of temporarily high power values. The reset function resets the diagram in such a way that it matches smaller power values again.

Example: SENS:SWE:FREQ:YSC:AUTO:RES

resets auto scale

Usage: Event

Options: Option R&S SMF-K28

Manual operation: See "Reset Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:FREQuency:YSCale:MAXimum < Maximum >

Sets the maximum value for the y axis of the measurement diagram.

Parameters:

<Maximum> float

Range: -200 to 100

Increment: 0.01 *RST: 40

Example: SENS:SWE:FREQ:YSC:MAX 10DBM

sets 10 dBm as the upper limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:FREQuency:YSCale:MINimum < Minimum >

Sets the minimum value for the y axis of the measurement diagram.

Parameters:

<Minimum> float

Range: -200 to 100

Increment: 0.01 *RST: -40

Example: SENS:SWE:FREQ:YSC:MIN -10DBM

sets -10 dBm as the lower limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:HCOPy:DATA?

Queries the measurement data directly. The data is transferred to the remote client as data stream, e.g. for further processing (see Chapter 6.3.3, "SCPI Parameters", on page 335, description of block data).

Readable ASCII data is available for hardcopy language CSV. The representation of the values depends on the selected orientation for the CSV format.

Return values:

<Data> block data

Example: SENS:SWE:HCOP:DEV:LANG CSV

selects output format *.csv.

SENS:SWE:HCOP:DEV:LANG:CSV:ORI HOR

selects horizontal orientation

SENS:SWE:HCOP:DEV:LANG:CSV:SEP SEM selects ";" as the separator between the values SENS:SWE:HCOP:DEV:LANG:CSV:DPO DOT

selects "." as decimal point
SENS:SWE:HCOP:DATA?

queries the measurement data of the current traces

Response:

#2651009500000;1019000000;1028500000;1038000000

-9.5;-9.7;-6.3;-2.5

The hash symbol # introduces the data block. The next number indicates how many of the following digits describe the length of the data block. In the example the 2 following digit indicates the length to be 65 characters.

Because horizontal representation is selected, a row with all the x-values of the active trace (frequency) follows. The second row contains all the y-values of the active trace (power). The rows end with a new line (each counts as one character).

Note: if more than one trace is active, the third row contains the x values of the second active trace, and so on.

Example: SENS:SWE:HCOP:DEV:LANG:CSV:ORI VERT

selects horizontal orientation
SENS:SWE:HCOP:DATA?

queries the measurement data of the current traces

Response:

#2681009500000;-9.5; 1019000000;-9.7; 1028500000;-6.3;

1038000000;-2.5;

for vertical representation the length of the data block is 68 the first power value, the second row contains the second frequency value of the active trace followed by the second power value, and so on. The rows end with a new line (each counts as

one character).

Note: if more than one trace is active, the first row also contains

the value pairs of the second active trace, and so on.

Usage: Query only

Options: Option R&S SMF-K28

:SENSe[:POWer]:SWEep:HCOPy:DEVice < Device>

Defines the output device. The setting is fixed to FILE, i.e. the hardcopy is stored in a file.

Parameters:

<Device> FILE | PRINter

*RST: FILE

Example: SENS:SWE:HCOP:DEV FIL

selects output device file

Options: Option R&S SMF-K28

Manual operation: See "Destination - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage < Language >

Selects the bitmap graphic format for the screenshot of the power analysis trace.

In addition, ASCII file format *.csv is offered. If file format *.csv is selected, the trace data is saved as an ASCII file with comma separated values. It is also possible to directly retrieve the data using commandSENS: SWE: HCOP: DATA?.

Parameters:

<Language> BMP | JPG | XPM | PNG | CSV

*RST: BMP

Example: SENS:SWE:HCOP:DEV:LANG BMP

selects output format *.bmp.

Options: Option R&S SMF-K28

Manual operation: See "Format - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:DPOint < DPoint>

Defines which character should be used as the decimal point of the values, either dot or comma.

Parameters:

<DPoint> DOT | COMMa

*RST: DOT

Example: SENS:SWE:HCOP:DEV:LANG CSV

selects output format *.csv.

SENS:SWE:HCOP:DEV:LANG:CSV:DPO DOT selects character dot for being used as decimal point.

Options: Option R&S SMF-K28

Manual operation: See "CSV Options Hardcopy- Power Analysis" on page 245

:SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:HEADer < Header>

Defines whether each row (or column depending on the orientation) should be preceded by a header containing information about the trace (see also :SENSe[:POWer]: SWEEp:HCOPy:DATA? on page 413).

Parameters:

<Header> OFF | STANdard

*RST: OFF

Example: SENS:SWE:HCOP:DEV:LANG CSV

selects output format *.csv.

SENS:SWE:HCOP:DEV:LANG:CSV:HEAD STAN selects the standard header for the *.csv file.

Options: Option R&S SMF-K28

Manual operation: See "CSV Options Hardcopy- Power Analysis" on page 245

: SENSe[:POWer]: SWEep: HCOPy: DEVice: LANGuage: CSV: OR lent at ion and the property of the

<Orientation>

Defines the orientation of the X/Y value pairs. For examples on how the data are arranged see "CSV Options Hardcopy- Power Analysis" on page 245.

Parameters:

<Orientation> HORizontal | VERTical

*RST: HORizontal

Example: SENS:SWE:HCOP:DEV:LANG CSV

selects output format *.csv.

SENS:SWE:HCOP:DEV:LANG:CSV:ORI VERT

selects vertical orientation, the value pairs are written in a column like structure (separated by the selected separator, e.g.

tab)

Options: Option R&S SMF-K28

Manual operation: See "CSV Options Hardcopy- Power Analysis" on page 245

: SENSe[:POWer]: SWEep: HCOPy: DEVice: LANGuage: CSV[:COLumn]: SEP arator

<Separator>

Defines which character is to separate the values, either tabulator, semicolon, comma or blank.

Parameters:

<Separator> TABulator | SEMicolon | COMMa | BLANk

*RST: SEMicolon

Example: SENS:SWE:HCOP:DEV:LANG CSV

selects output format *.csv.

SENS:SWE:HCOP:DEV:LANG:CSV:SEP TAB

a tab separates the values

Options: Option R&S SMF-K28

Manual operation: See "CSV Options Hardcopy- Power Analysis" on page 245

:SENSe[:POWer]:SWEep:HCOPy:DEVice:SIZE <Size>

Sets the size of the hardcopy in number of pixels. The first value of the size setting defines the width, the second value the height of the image.

Parameters:

<Size> 320,240 | 640,480 | 800,600 | 1024,768

*RST: 320,240

Example: SENS:SWE:HCOP:DEV:LANG BMP

selects output format *.bmp.

SENS:SWE:HCOP:DEV:SIZE 320,240

the size of the bitmap is 320 pixels by 240 pixels.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy[:EXECute]

Triggers the generation of a hardcopy of the current measurement diagram. The data is written into the file selected/created with the :SENSe[:POWer]:SWEep:HCOPy: FILE[:NAME] command.

Example: SENS:SWE:HCOP:DEV:LANG BMP

selects output format *.bmp.

SENS:SWE:HCOP:FILE:AUTO:STAT OFF

switches off automatic file naming.

SENS:SWE:HCOP:FILE 'var/nrp_trace1' creates the file nrp trace1.bmp in the set path.

SENS:SWE:HCOP

triggers the generation of a hardcopy of the current measure-

ment diagram. The hardcopy is stored in the file

nrp_trace1.bmp.

Usage: Event

Options: Option R&S SMF-K28

Manual operation: See "Save Hardcopy - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME] <Name>

Creates of selects a file for storing the hardcopy after the SENS: SWE: HCOP: EXEC command is sent. The directory is either defined with the command MMEMory: CDIR or the path is specified together with the file name. Access to the file via remote control is possible using the commands of the MMEM-Subsystem. In contrast, command SENSe: SWEep: HCOPy: DATA? transfers the hardcopy contents directly to the remote client where they can be further processed.

Parameters:

<Name> string

Example: SENS:SWE:HCOP:DEV:LANG BMP

selects output format *, bmp.

SENS:SWE:HCOP:FILE:AUTO:STAT OFF

switches off automatic naming.

SENS:SWE:HCOP:FILE 'var/trace/nrp_trace1' creates the file nrp trace1.bmp in the trace directory.

SENS: SWE: HCOP: EXEC

triggers the generation of a hardcopy of the current trace. The

hardcopy is stored in the file nrp trace1.bmp.

Options: Option R&S SMF-K28

Manual operation: See "File name - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory < Directory>

Defines the directory into which the hardcopy files will be stored if auto naming is activated (SENS:SWE:HCOP:FILE:AUTO:STAT ON).

Parameters:

<Directory> string

Example: SENS:SWE:HCOP:FILE:AUTO:DIR 'var/nrp'

hardcopy file are stored in directory var/nrp if automatic nam-

ing is activated.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar

Deletes all files with extensions bmp, img, png, xpm and csv in the directory set for automatic naming.

Example: SENS:SWE:HCOP:FILE:AUTO:DIR 'var/nrp'

hardcopy file are stored in directory var/nrp if automatic nam-

ing is activated.

SENS: SWE: HCOP: FILEAUTO: DIR: CLE

deletes all hardcopy file that are stored in directory var/nrp.

Usage: Event

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:FILE?

Queries the file name generated with the automatic naming settings.

Note: As default the automatically generated file name is composed of: >Path>/
<Prefix><YYYY><MM><DD><Number>.<Format>. Each component can be deactivated/activated separately to individually design the file name.

Return values:

<File> string

Example: SENS:SWE:HCOP:DEV:LANG BMP

selects output format *.bmp.

SENS:SWE:HCOP:FILE:AUTO:DIR 'var/nrp'

hardcopy file are stored in directory var/nrp if automatic nam-

ing is activated.

SENS:SWE:HCOP:FILE:AUTO:PREF 'sens1'

the file name starts with the prefix sens1. The usage of automatic naming with prefix and date in the file name is preset

(...:STAT ON).
SENS:SWE:HCOP

triggers the generation of a hardcopy of the current trace.

SENS: SWE: HCOP: FILE: AUTO: FILE?

queries the file name

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "File name - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY?

Aueries the day of the date part in the automatic file name.

Return values:

<Day> integer

Range: 1 to 31

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:DAY?

queries the day of the date part in the automatic file name.

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe <State>

Activates the usage of the day in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:DAY:STAT OFF

deactivates the usage of the day in the automatic file name.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh?

Queries the day of the date part in the automatic file name.

Return values:

<Month> integer

Range: 1 to 12

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:MONT?

queries the month of the date part in the automatic file name.

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe

<State>

Activates the usage of the month in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:MONT:STAT OFF

deactivates the usage of the month in the automatic file name.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer?

Queries the generated number in the automatic file name.

Return values:

<Number> integer

Range: 0 to 999999

*RST: 0

Example: SENS:SWE:HCOP:FILE:AUTO:NUMB?

queries the number in the automatic file name.

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix < Prefix>

Sets the prefix part in the automatic file name.

Parameters:

<Prefix> string

Example: SENS:SWE:HCOP:FILE:AUTO:PREF 'sensor'

the prefix sensor is used in the automatically generated file

name of the hardcopy file.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

$: SENSe \underline{[:POWer]: SWEep: HCOPy: FILE [:NAME]: AUTO [:FILE]: PREFix: STATe}$

<State>

Activates the usage of the prefix in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:PREF:STAT OFF

deactivates the usage of the prefix in the automatic file name.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR?

Queries the year of the date part in the automatic file name.

Return values:

<Year> integer

Range: 1784 to 8000

*RST: 0

Example: SENS:SWE:HCOP:FILE:AUTO:YEAR?

queries the year of the date part in the automatic file name.

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe

<State>

Activates the usage of the year in the automatic file name.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:YEAR:STAT OFF

deactivates the usage of the year in the automatic file name.

Options: Option R&S SMF-K28

Manual operation: See "Save Options - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:STATe <State>

Activates/deactivates automatic naming of the hardcopy files.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: SENS:SWE:HCOP:FILE:AUTO:STAT OFF

deactivates automatic naming of the hardcopy files. The file

name and directory is now defined with command

SENS:SWE:HCOP:FILE:NAME <path>.

Options: Option R&S SMF-K28

Manual operation: See "File name - Power Analysis" on page 243

:SENSe[:POWer]:SWEep:INITiate

Starts the power analysis with NRP power sensor.

Example: SENS:SWE:INIT

start the power measurement.

Usage: Setting only

Options: Option R&S SMF-K28

Manual operation: See "Start - Power Analysis" on page 214

:SENSe[:POWer]:SWEep:MODE < Mode>

Selects power versus frequency measurement (frequency response), power vs power measurement (power sweep, AM/AM) or power vs. time measurement.

Parameters:

<Mode> FREQuency | POWer | TIME

*RST: FREQuency

Example: SENS:SWE:MODE FREQ

selects frequency mode.

Options: Option R&S SMF-K28

Manual operation: See "Measurement Mode - Power Analysis" on page 219

:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:COPY

Generates a reference curve for "Power" measurement.

Example: SENS:POW:SWE:POW:REF:DATA:COPY

Example: generates a reference curve in power mode.

Usage: Event

Options: R&S SMF-K28

:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:POINts?

Queries the number of points from the reference curve in "Power" measurement.

Return values:

<Points> integer

Range: 10 to 1000

Example: SENS:POW:SWE:POW:REF:DATA:POIN?

Example: queries the number of points from the reference curve in power

mode.

Usage: Query only

Options: R&S SMF-K28

:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:XVALues <XValues>

Sets or queries the x values of the two reference points, i.e. "Power X (Point A)" and "Power X (Point B)" in "Power" measurement.

Parameters:

<XValues> string

Example: SENSe:POW:SWE:POW:REF:DATA:XVAL -15DBM,20DBM

Example: sets the x value of reference "Point A" to -15 dBm, and the value

of "Point B" to 20 dBm.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:POWer:REFerence:DATA:YVALues <YValues>

Sets or queries the y values of the two reference points, i.e. "Power Y (Point A)" and "Power Y (Point B)" in "Power" measurement.

Parameters:

<YValues> string

Example: SENSe:POW:SWE:TIME:REF:DATA:YVAL -30,10

Example: sets the y value of reference "Point A" to -30 dBm, and the value

of "Point B" to 10 dBm.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:POWer:RMODe <RMode>

Selects single or continuous mode for measurement mode power in power analysis.

Parameters:

<RMode> SINGle | CONTinuous

*RST: SINGle

Example: SENS:SWE:POW:RMOD SING

selects single measurement

Options: Option R&S SMF-K28

Manual operation: See "Execution - Power Analysis" on page 222

:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet <Offset>

Defines the level offset at the sensor input in dB. Activate the offset with the command :SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet:STATe on page 424.

Parameters:

<Offset> float

Range: -100 to 100

Increment: 0.01 *RST: 0

Example: SENS2:SWE:POW:OFFS -5dB

defines a level offset of -5 dB.
SENS2:SWE:POW:OFFS:STAT ON

activates that the specified level offset is taken into account.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset - Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet:STATe <State>

Activates a level offset at the sensor input. Define the appropriate value with the command :SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet on page 423.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS2:SWE:POW:OFFS:STAT ON

activates the specified level offset.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset State- Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency <SFRequency>

Defines the separate frequency used for power vs. power measurement.

Parameters:

<SFRequency> float

Range: 0 to 1E12

Increment: 1 *RST: 1E6

Example: SENS1:SWE:POW:SENS:SFR 2GHz

'the measurement is performed at 2 GHz

Manual operation: See "Use Separate Frequency- Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency:STATe <State>

Activates the use of a different frequency for the power measurement.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS1:SWE:POW:SENS:SFR:STAT ON

activates the use of a separate frequency than the generator fre-

quency for power analysis

Manual operation: See "Use Separate Frequency- Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet <Offset>

Defines the level offset at the sensor input in dB. Activate the offset with the command :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet:STATe.

Parameters:

<Offset> float

Range: -100 to 100

Increment: 0.01 *RST: 0

Example: SENS2:SWE:TIME:OFFS -7dB

defines a level offset of -7 dB.
SENS2:SWE:TIME:OFFS:STAT ON

activates that the specified level offset is taken into account.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset - Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet:STATe <State>

Activates a level offset at the sensor input. Define the appropriate value with the command :SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS2:SWE:POW:TIME:STAT ON

activates the specified level offset.

Options: Option R&S SMF-K28

Manual operation: See "Level Offset State- Power Analysis" on page 229

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:STATe <State>

Enables pulse data analysis. The measurement is started with command INITiate.

Note: The command are only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS1:SWE:TIM:PULS:STAT ON

enables pulse data analysis.

Options: Option R&S SMF-K28

Manual operation: See "State - Pulse Data Analysis" on page 234

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:BASE <Base>

Selects how the threshold parameters for pulse analysis are calculated.

Note: The command is only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<Base> VOLTage | POWer

*RST: VOLTage

Example: SENS1:SWE:TIME:PULS:THR:BASE POW

activates threshold calculation related to power.

Options: Option R&S SMF-K28

Manual operation: See "Voltage / Power Related - Pulse Data Analysis"

on page 234

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer: HREFerence <HReference>

Sets the upper reference level in terms of percentage of the overall pulse level (power or voltage). The distal power defines the end of the rising edge and the start of the falling edge of the pulse.

Note: The command is only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<HReference> float

Range: 0 to 100 Increment: 0.01 *RST: 90

Options: Option R&S SMF-K28

Manual operation: See "Distal - Pulse Data Analysis" on page 234

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer: REFerence < Reference>

Sets the medial reference level in terms of percentage of the overall pulse level (power or voltage related). This level is used to define pulse width and pulse period.

Note: The command is only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<Reference> float

Range: 0.0 to 100.0

Increment: 0.01 *RST: 50.0

Example: SENS1:SWE:TIM:PULS:THR:REF 40

sets the medial reference level to 40% of the overall pulse level.

Options: Option R&S SMF-K28

Manual operation: See "Mesial - Pulse Data Analysis" on page 234

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer: LREFerence < LReference>

Sets the lower reference level in terms of percentage of the overall pulse level. The proximal power defines the start of the rising edge and the end of the falling edge of the pulse.

Note: This parameter is only avalaible in time measurement mode and R&S NRP-Z81 power sensors.

Parameters:

<LReference> float

Range: 0.0 to 100.0

Increment: 0.01 *RST: 10.0

Example: SENS:SWE:TIM:PULS:THR:LREF 10

sets the lower reference level to 10%.

Options: Option R&S SMF-K28

Manual operation: See "Proximal - Pulse Data Analysis" on page 235

:SENSe[:POWer]:SWEep:POWer:SPACing[:MODE] < Mode>

Queries the sweep spacing for the power versus power measurement. The setting is fixed to LINear.

Parameters:

<Mode> LINear

*RST: LINear

Example: SENS: SWE: POW: SPAC?

Options: Option R&S SMF-K28

Manual operation: See "Spacing - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:POWer:STARt <Start>

Sets the start level for the power versus power measurement.

Parameters:

<Start> float

Range: -145 to 20 Increment: 0.01 *RST: -40 dBm

Example: SENS:SWE:POW:STAR -20DBM

sets the start level to -20 dBm

Options: Option R&S SMF-K28

Manual operation: See "Min - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:POWer:STEPs <Steps>

Sets the number of measurement steps for the power versus power measurement.

Parameters:

<Steps> integer

Range: 10 to 1000

*RST: 500

Example: SENS:SWE:POW:STEP 500

sets the 500 measurement steps

Options: Option R&S SMF-K28

Manual operation: See "Steps - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:POWer:STOP <Stop>

Sets the stop level for the power versus power measurement.

Parameters:

<Stop> float

Range: -145 to 20 Increment: 0.01 *RST: 40

Example: SENS:SWE:POW:STOP 20.0DBM

sets the stop level to 20 dBm

Options: Option R&S SMF-K28

Manual operation: See "Max - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] <Mode>

Selects the timing mode of the measurement.

Parameters:

<Mode> FAST | NORMal | HPRecision

FAST

Selection FAST leads to a fast measurement with a short inte-

gration times for each measurement step.

NORMal

NORMal leads to a longer but more precise measurement due

to a higher integration time for each step.

*RST: NORMal

Example: SENS:SWE:POW:TIM:MODE FAST

selects fast mode.

Options: Option R&S SMF-K28

Manual operation: See "Timing - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:POWer:YSCale:AUTO <Auto>

Activates autoscaling of the Y axis of the diagram.

Parameters:

<a>Auto> OFF | CEXPanding | FEXPanding | CFLoating | FFLoating

OFF

Auto scaling is deactivated. When switching from activated to deactivated Auto scaling, the scaling is maintained. When switching from deactivated to activated Auto scaling, the scaling is reset to min = max = 0.

CEXPanding | FEXPanding

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is expanded if the minimum or maximum values of the trace move outside the current scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selection fine.

CFLoating | FFLoating

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is either expanded if the minimum or maximum values of the trace move outside the current scale or scaled down if the trace fits into a reduced scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selection fine.

*RST: OFF

Example: SENS:SWE:POW:YSC:AUTO OFF

deactivates auto scale

Options: Option R&S SMF-K28

Manual operation: See "Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet

Resets the Y scale to suitable values after the use of auto scaling in the expanding mode. For this mode, the scale might get expanded because of temporarily high power values. The reset function allows resetting the diagram to match smaller power values again.

Example: SENS:SWE:POW:YSC:AUTO:RES

resets auto scale

Usage: Event

Options: Option R&S SMF-K28

Manual operation: See "Reset Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum < Maximum >

Sets the maximum value for the y axis of the measurement diagram.

Parameters:

<Maximum> float

Range: min level to max level

Increment: 0.01 *RST: 40 dBm

Example: SENS:SWE:POW:YSC:MAX 10DBM

sets 10 dBm as the upper limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:POWer:YSCale:MINimum < Minimum >

Sets the minimum value for the y axis of the measurement diagram.

Parameters:

<Minimum> float

Range: min level to max level

Increment: 0.01 *RST: -40 dBm

Example: SENS:SWE:POW:YSC:MIN -10DBM

sets -10 dBm as the lower limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:RMODe <RMode>

Selects single or continuous mode for power analysis (all measurement modes).

Parameters:

<RMode> SINGle | CONTinuous

*RST: SINGle

Example: SENS:SWE:RMOD SING

selects single measurement

Options: Option R&S SMF-K28

Manual operation: See "Execution - Power Analysis" on page 222

:SENSe[:POWer]:SWEep:TIME:RMODe <RMode>

Selects single or continuous mode for measurement mode time in power analysis.

Parameters:

<RMode> SINGle | CONTinuous

*RST: SINGle

Example: SENS:SWE:TIME:RMOD SING

selects single measurement

Options: Option R&S SMF-K28

Manual operation: See "Execution - Power Analysis" on page 222

:SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] <Count>

Selects the averaging factor in time mode. The count number determines how many measurement cycles are used to form a measurement result. Higher averaging counts reduce noise but increase the measurement time. Averaging requires a stable trigger event so that the measurement cycles have the same timing.

Parameters:

<Count> 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024

*RST: 1

Example: SENS:SWE:MODE TIME

selects time mode

SENS: SWE: TIME: AVER 128 selects averaging factor 128

Manual operation: See "Average - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY

Generates a reference curve for "Time" measurement.

Example: SENS:POW:SWE:TIME:REF:DATA:COPY

Example: generates a reference curve in time mode.

Usage: Event

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:POINts?

Queries the number of points from the reference curve in "Time" measurement.

Return values:

<Points> integer

Range: 10 to 1000

*RST: 0

Example: SENS:POW:SWE:TIME:REF:DATA:POIN?

Example: queries the number of points from the reference curve in time

mode.

Usage: Query only
Options: R&S SMF-K28

:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:XVALues <XValues>

Sets or queries the x values of the two reference points, i.e. "Time X (Point A)" and "Time X (Point B)" in "Time" measurement.

Parameters:

<XValues> string

Example: SENSe:POW:SWE:TIME:REF:DATA:XVAL 5,45

Example: sets the x value of reference "Point A" to 5 μs, and the value of

"Point B" to 45 µs.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues <YValues>

Sets or queries the y values of the two reference points, i.e. "Power Y (Point A)" and "Power Y (Point B)" in "Time" measurement.

Parameters:

<YValues> string

Example: SENSe:POW:SWE:TIME:REF:DATA:YVAL -30,10

Example: sets the y value of reference "Point A" to -30 dBm, and the value

of "Point B" to 10 dBm.

Options: R&S SMF-K28

Manual operation: See "Define Reference - Trace Power Analysis" on page 217

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency <SFrequency>

Defines the separate frequency used for power vs. time measurement.

Parameters:

<SFrequency> float

Range: 0 to 1E12

Increment: 1 *RST: 1E6

Example: SENS1:SWE:TIME:SENS:SFR 2GHz

the measurement is performed at 2 GHz

Options: Option R&S SMF-K28

Manual operation: See "Use Separate Frequency- Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency:STATe <State>

Activates the use of a different frequency for the power measurement.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SENS1:SWE:TIME:SENS:SFR:STAT ON

activates the use of a separate frequency than the generator fre-

quency for power analysis

Options: Option R&S SMF-K28

Manual operation: See "Use Separate Frequency- Power Analysis" on page 230

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:AUTO <Auto>

Sets the trigger level, the hysteresis and the dropout time to default values.

Parameters:

<Auto> ONCE

*RST: ---

Example: SENS1:SWE:TIME:SENS:TRIG:AUTO ONCE

the trigger level is automatically determined

Options: Option R&S SMF-K28

Manual operation: See "Auto Set - Power Analysis" on page 241

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:DTIMe <DTime>

Determines the minimum time for which the signal must be below (above) the power level defined by level and hysteresis before triggering can occur again.

Parameters:

<DTime> float

Range: 0 to 10 *RST: 200E-9

Example: SENS1:SWE:TIME:SENS:TRIG:DTIM 10 us

the drop out time is 10 us

Options: Option R&S SMF-K28

Manual operation: See "Drop out Time - Power Analysis" on page 241

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:HYSTeresis < Hysteresis>

Sets the hysteresis of the internal trigger threshold. Hysteresis is the magnitude (in dB) the trigger signal level must drop below the trigger threshold (positive trigger slope) before triggering can occur again.

Parameters:

<Hysteresis> float

Range: 0 to 10 Increment: 0.001 *RST: 0.5

Example: SENS1:SWE:TIME:SENS:TRIG:HYST 0.5 dB

the hysteresis is 0.5 dB

Options: Option R&S SMF-K28

Manual operation: See "Hysteresis - Power Analysis" on page 240

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:LEVel <Level>

Sets the trigger threshold.

Parameters:

<Level> float

Range: -200 to 100 Increment: 0.001 *RST: 1

Example: SENS1:SWE:TIME:SENS:TRIG:LEV -20 dBm

sets the trigger level to -20 dBm.

Options: Option R&S SMF-K28

Manual operation: See "Level - Power Analysis" on page 240

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SLOPe <TriggerSlope>

Sets the polarity of the active slope for the trigger signals.

Parameters:

<TriggerSlope> POSitive | NEGative

*RST: POSitive

Example: SENS1:SWE:TIME:TRIG:SLOP POS

the positive edge of a trigger signal is active.

Options: Option R&S SMF-K28

Manual operation: See "Slope - Power Analysis" on page 240

:SENSe<ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SOURce <Source>

Selects if the measurement is free running (FREE) or starts only after a trigger event. The trigger can be applied internally or externally.

Parameters:

<Source> FREE | AUTO | INTernal | EXTernal

*RST: AUTO

Example: SENS1:SWE:TIME:SENS:TRIG:SOUR FREE

the power versus time measurement is performed free running

Options: Option R&S SMF-K28

Manual operation: See "Mode - Power Analysis" on page 240

:SENSe[:POWer]:SWEep:TIME:SPACing[:MODE] <Mode>

Queries the sweep spacing for the power versus time measurement. The spacing is fixed to linear.

Parameters:

<Mode> LINear

*RST: LINear

Example: SENS:SWE:TIME:SPAC?

queries the sweep spacing

Options: Option R&S SMF-K28

Manual operation: See "Spacing - Power Analysis" on page 221

:SENSe[:POWer]:SWEep:TIME:STARt <Start>

Sets the start time for the power versus time measurement. Value 0 defines the trigger point. By choosing a negative time value, the trace can be shifted in the diagram. It is possible, that the measurement cannot be performed over the complete time range because of limitations due to sensor settings. In this case, an error message is output.

Parameters:

<Start> float

Range: -1 to 1 Increment: 1E-12 *RST: -5E-6

Example: SENS:SWE:TIME:STAR Os

sets the start time to 0 s

Options: Option R&S SMF-K28

Manual operation: See "Min - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:TIME:STEPs <Steps>

Sets the number of measurement steps for the power versus time measurement. Value 0 defines the trigger point.

Parameters:

<Steps> integer

Range: 10 to 1000

*RST: 200

Example: SENS:SWE:TIME:STEP 500

sets the 500 measurement steps

Options: Option R&S SMF-K28

Manual operation: See "Steps - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:TIME:STOP <Stop>

Sets the stop time for the power versus time measurement.

Parameters:

<Stop> float

Range: 0 to 2 Increment: 1E-12 *RST: 1E-3

Example: SENS:SWE:TIME:STOP 1ms

sets the stop time to 1 ms

Options: Option R&S SMF-K28

Manual operation: See "Max - Power Analysis" on page 220

:SENSe[:POWer]:SWEep:TIME:TEVents < TriggerTEvents >

Determines, whether the measurement data processing starts with a trigger event in one of the sensors (Logical OR), or whether all channels have to be triggered (logical AND). Each sensor evaluates a trigger event according to its setting independently. This function supports the internal or external trigger modes with multi-channel time measurements.

Parameters:

<TriggerTEvents> AND | OR

*RST: AND

Example: SENS:POW:SWE:TIME:TEV AND

the measurement data processing starts when all channels are

triggered.

Options: Option R&S SMF-K28

Manual operation: See "All Trigger Events - Power Analysis" on page 222

:SENSe[:POWer]:SWEep:TIME:YSCale:AUTO <Auto>

Activates autoscaling of the Y axis in the diagram.

Parameters:

<Auto> OFF | CEXPanding | FEXPanding | CFLoating | FFLoating

OFF

Auto scaling is deactivated. When switching from activated to deactivated Auto scaling, the scaling is maintained. When switching from deactivated to activated Auto scaling, the scaling

is reset to min = max = 0.

CEXPanding | FEXPanding

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is expanded if the minimum or maximum values of the trace move outside the current scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selection fine.

CFLoating | FFLoating

Auto scale is activated. The scaling of the Y-axis is selected in such a way, that the trace is always visible. To this end, the range is either expanded if the minimum or maximum values of the trace move outside the current scale or scaled down if the trace fits into a reduced scale. The step width is 5 dB for selection course and variable in the range of 0.2 db to 5 dB for selection.

tion fine.

*RST: OFF

Example: SENS:SWE:TIME:YSC:AUTO OFF

deactivates auto scale

Options: Option R&S SMF-K28

Manual operation: See "Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:TIME:YSCale:AUTO:RESet

Resets the Y scale to suitable values after the use of auto scaling in the expanding mode. For this mode, the scale might get expanded because of temporarily high power values. The reset function allows resetting the diagram to match smaller power values again.

Example: SENS:SWE:TIME:YSC:AUTO:RES

resets auto scale

Usage: Event

Options: Option R&S SMF-K28

Manual operation: See "Reset Auto Scale - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:TIME:YSCale:MAXimum < Maximum >

Sets the maximum value for the y axis of the measurement diagram.

Parameters:

<Maximum> float

Range: min level to max level

Increment: 0.01 *RST: 40 Default unit: dBm

Example: SENS:SWE:TIME:YSC:MAX 10DBM

sets 10 dBm as the upper limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

:SENSe[:POWer]:SWEep:TIME:YSCale:MINimum < Minimum >

Sets the minimum value for the y axis of the measurement diagram.

Parameters:

<Minimum> float

Range: min level to max level

Increment: 0.01 *RST: -40 Default unit: dBm

Example: SENS:SWE:TIME:YSC:MIN -10DBM

sets -10 dBm as the lower limit of the measurement diagram.

Options: Option R&S SMF-K28

Manual operation: See "Min - Max y-Axis - Power Analysis" on page 223

SENSe<ch>[:POWer]:TYPE?

The command queries the type of sensor. The type is automatically detected.

Return values:

<Type> string

Example: SENS:TYPE?

queries the type of sensor connected to the POWER SENSOR

connector.

Response: NRP-Z21

the R&S NRP-Z21 sensor is used.

Usage: Query only

Manual operation: See "Current Sensors" on page 112

:SENSe<ch>[:POWer]:ZERO

The command activates the autozero function. Zeroing is required in regular interval (at least once a day) and if the temperature has varied more than about 5 °C, if the sensor has been replaced or if measurements of signals with very low power are to be performed. The RF power source must be switched off or disconnected from the sensor before starting the autozero function.

Example: SENS: ZERO

activates autozero function.

Usage: Event

Manual operation: See "Zero - Power Sensors" on page 201

:SENSe<ch>:UNIT[:POWer] <Power>

The command selects the unit used for result query with command READ. The power sensor provides the measured value in Watt. In which unit the measured value is returned is selected here and might be either Watt, dBm or dBuV.

Parameters:

<Power> DBM | DBUV | WATT

*RST: DBM

Example: SENS2:UNIT DBM

selects unit dBm for the measured value returned by command

READ. READ2?

Response: 7.34

7.34 dBm are measured by sensor 2.

Manual operation: See "Unit" on page 200

7.12.6 TRACe Subsystem

| :TRACe <ch>[:POWer]:SWEep:COLor</ch> | 441 |
|--|-----|
| :TRACe <ch>[:POWer]:SWEep:COPY</ch> | 441 |
| :TRACe <ch>[:POWer]:SWEep:DATA:POINts?</ch> | 441 |
| :TRACe <ch>[:POWer]:SWEep:DATA:XVALues?</ch> | 442 |
| :TRACe <ch>[:POWer]:SWEep:DATA:YVALues?</ch> | 442 |
| :TRACe <ch>[:POWer]:SWEep:FEED</ch> | 442 |
| :TRACe[:POWer]:SWEep:MEASurement:FULLscreen:DISPlay:ANNotation[:STATe] | 443 |
| :TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[:STATe] | 443 |
| :TRACe[:POWer]:SWEep:MEASurement:MARKer:DISPlay:ANNotation[:STATe] | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:AVERage?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MINimum?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE?</ch> | 444 |

| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP?</ch> | 444 |
|--|-----|
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:REFerence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DURation?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:STATe?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OCCurrence?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot?</ch> | |
| :TRACe[:POWer]:SWEep:MEASurement:PULSe:DISPlay:ANNotation[:STATe] | 445 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:ALL:DISPlay:ANNotation[:STATe]</ch> | 445 |
| :TRACe[:POWer]:SWEep:MEASurement:STANdard:DISPlay:ANNotation[:STATe] | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DURation:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:AVERage:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MINimum:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:REFerence:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation:DISPlay:ANNotation[:</ch> | |
| STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OCCurrence:</ch> | |
| DISPlay:ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot:</ch> | |
| DISPlay:ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation:DISPlay:</ch> | _ |
| ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence:</ch> | |
| DISPlay: ANNotation[:STATe] | 447 |

| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot:</ch> | |
|---|-----|
| DISPlay:ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:BASE?</ch> | 447 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:HREFerence</ch> | 447 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:REFerence</ch> | 448 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:LREFerence</ch> | 448 |
| :TRACe <ch>[:POWer]:SWEep:STATe</ch> | 449 |
| | |

:TRACe<ch>[:POWer]:SWEep:COLor <Color>

Defines the color of a trace.

Parameters:

<Color> INVers | GRAY | YELLow | BLUE | GREen | RED | MAGenta

*RST: trace 1 = YELLow, trace 2 = GREen, trace 3 =

RED.

Example: TRAC2:SWE:COL GRAY

trace2 is indicated in gray color

Manual operation: See "Color - Trace Power Analysis" on page 218

:TRACe<ch>[:POWer]:SWEep:COPY <Copy>

Stores the selected trace data as reference trace.

Setting parameters:

<Copy> REFerence

Example: TRAC2:SWE:COPY REF

stores the current trace2 as reference trace'

TRAC1:SWE:FEED REF

assigns the reference trace to trace 1.

Usage: Setting only

Manual operation: See "Indication - Power Analysis" on page 216

:TRACe<ch>[:POWer]:SWEep:DATA:POINts?

Queries the number of measurement points of the selected trace of the current power analysis.

Return values:

<Points> integer

Range: 10 to 1000

*RST: 0

Example: TRAC1:SWE:DATA:POIN?

Response: 624

Measurement trace 1 contains 624 measurement points

Usage: Query only

Manual operation: See "Start - Power Analysis" on page 214

:TRACe<ch>[:POWer]:SWEep:DATA:XVALues?

Queries the x-axis values - frequency, power or time values - of the selected trace of the current power analysis.

Return values:

<XValues> string

Example: SENS:SWE:MODE FREQ

sets measurement mode frequency versus power.

SENS: SWE: RMOD SING selects single measurement.

SENS:SWE:INIT

starts the measurement.

*OPC?

waits until measurement is performed.

TRAC1:SWE:DATA:XVAL?

queries the x-axis values of trace 1.

TRAC1:SWE:DATA:YVAL

queries the measurement values of trace 1.

Usage: Query only

Manual operation: See "Start - Power Analysis" on page 214

:TRACe<ch>[:POWer]:SWEep:DATA:YVALues?

Queries the measurement (y-axis) values of the selected trace of the current power analysis.

Return values:

<YValues> string

Example: SENS:SWE:TRAC2:DATA:YVAL?

queries the power values of trace 2.

Usage: Query only

Manual operation: See "Start - Power Analysis" on page 214

:TRACe<ch>[:POWer]:SWEep:FEED <Feed>

Selects the source for the trace data.

Parameters:

<Feed> SENS1 | SENS2 | SENS3 | REFerence | NONE | SENSor1 |

SENSor2 | SENSor3 | SENS4 | SENSor4

*RST: The preset value for each trace is evaluated during

runtime as follows: If a sensor is plugged into the generator whose number corresponds to the trace number, this sensor is used to feed the trace and the state of the trace is ON; If no sensor is found with number corresponding to the trace number, the

preset value of the trace is "Off".

Example: TRAC2:SWE:COPY REF

stores trace2 as reference trace.

TRAC1:SWE:FEED REF

assigns the reference trace to trace 1.

TRAC1:SWE:STAT ON

assigns the reference trace to trace 1.

SENS: SWE: RMOD SING selects single measurement

SENS: SWE: INIT starts the measurement

Manual operation: See "Indication - Power Analysis" on page 216

:TRACe[:POWer]:SWEep:MEASurement:FULLscreen:DISPlay:ANNotation[: STATe] <State>

Selects fullscreen display of the measurement diagram on the display and in the hard-copy file.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: TRAC:SWE:MEAS:FULL:DISP:ANN ON

the display only shows the diagram.

Manual operation: See "REARR list - Power Analysis" on page 224

:TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[:STATe] <State>

Activates th eindication of the time gate borders and values in the measurement diagram and in the hardcopy file. The gate settings are performed with the CALC: POW: SWE: TIME: GATE:... commands.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: TRAC:SWE:MEAS:GATE:DISP:ANN ON

the diagram also shows the gate information.

Options: Option R&S SMF-K28

Manual operation: See "REARR list - Power Analysis" on page 224

:TRACe[:POWer]:SWEep:MEASurement:MARKer:DISPlay:ANNotation[:STATe] <State>

Activates the indication of the markers and the marker list in the measurement diagram and in the hardcopy file.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: TRAC:SWE:MEAS:MARK:DISP:ANN ON

the diagram also shows the marker information.

Options: Option R&S SMF-K28

Manual operation: See "Marker and Pulse Data Indication - Power Analysis"

on page 213

```
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:AVERage?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MINimum?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP?
:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:REFerence?
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle?
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DURation?
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod?
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation?
:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:STATe?
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation?
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:
     OCCurrence?
:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot?
```

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot? :TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation? :TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence? :TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot?

The listed commands query the measured pulse parameter values.

Note: These commands are only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Return values:

<Overshoot> float

Range: 0 to 100 Increment: 0.01 *RST: 0

Example: TRAC1:SWE:MEAS:POW:HREF?

gueries the measured mesial threshold level of trace 1

TRAC3:SWE:MEAS:POW:MAX?

queries the measured peak power of trace 3

Usage: Query only

Options: Option R&S SMF-K28

Manual operation: See "Transition Times - Pulse Data Analysis" on page 236

:TRACe[:POWer]:SWEep:MEASurement:PULSe:DISPlay:ANNotation[:STATe] <State>

Activates the indication of the pulse data below the measurement diagram and storing the data in the hardcopy file. The parameters to be indicated can be selected with the following TRAC: SWE: MEAS:.... commands. Only six parameters are indicated at one time.

Note: This command is only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: TRAC:SWE:MEAS:PULS:DISP:ANN ON

activates indication of the selected pulse data.

Options: Option R&S SMF-K28

Manual operation: See "Marker and Pulse Data Indication - Power Analysis"

on page 213

:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:ALL:DISPlay:ANNotation[: STATe] <State>

This command deactivates the indication of all pulse data of the selected trace. The parameters to be indicated can be selected with the TRAC: SWE: MEAS:.... commands. Only six parameters are indicated at one time.

Note: This command is only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRAC:SWE:MEAS:PULS:ALL:DISP:ANN OFF

switches the indication of all pulse data off

Options: Option R&S SMF-K28

:TRACe[:POWer]:SWEep:MEASurement:STANdard:DISPlay:ANNotation[:STATe] <State>

Selects the standard view, i.e. diagram and buttons but no lists are displayed and also stored in the hardcopy file.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: TRAC:SWE:MEAS:STAN:DISP:ANN ON

activates indication of the selected pulse data

Options: Option R&S SMF-K28

Manual operation: See "REARR list - Power Analysis" on page 224

:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:DURation:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:AVERage:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:MINimum:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:REFerence:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation:DISPlay:

ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation:

DISPlay: ANNotation[:STATe] < State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OCCurrence:

DISPlay:ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot: DISPlay:ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation: DISPlay:ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence: DISPlay:ANNotation[:STATe] <State>

:TRACe<ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot: DISPlay:ANNotation[:STATe] < State>

The listed commands select the pulse parameters which are indicated in the display and hardcopy file. Only six parameters can be indicated at a time.

Note: These commands are only avalaible in time measurement mode and with R&S NRP-Z81 power sensors.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRAC:SWE:MEAS:TRAC2:PULS:PER:DISP:ANN ON

selects the pulse period to be indicated in the display

TRAC:SWE:MEAS:PULS:DISP:ANN ON

activates indication of the selected pulse data in the display

Options: Option R&S SMF-K28

Manual operation: See "Transition Times - Pulse Data Analysis" on page 236

:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:BASE?

Queries how the threshold parameters are calculated.

Note: This parameter is only avalaible in time measurement mode and R&S NRP-Z81 power sensors.

Return values:

<Base> VOLTage | POWer

*RST: VOLTage

Example: TRAC1:SWE:PULS:THR:BAS?

queries the threshold base of pulse data calculation.

Usage: Query only

Manual operation: See "Voltage / Power Related - Pulse Data Analysis"

on page 234

:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:POWer:HREFerence <hre="https://www.energy.com/hreshold:POWer:HREFerence">HReference>

Queries the upper threshold level of the overall pulse level. The distal power defines the end of the rising edge and the start of the falling edge of the pulse.

Note: This parameter is only avalaible in time measurement mode and R&S NRP-Z81 power sensors.

Parameters:

<HReference> float

Range: 0.0 to 100.0

Increment: 0.01 *RST: 90.0

Example: TRAC2:SWE:PULS:THR:POW:HREF?

queries the upper reference level of trace 2.

Manual operation: See "Distal - Pulse Data Analysis" on page 234

: TRACe < ch > [:POWer]: SWEep: PULSe: THReshold: POWer: REFerence

<Reference>

Queries the medial threshold level of the overall pulse level. This level is used to define the pulse width and pulse period.

Note: This parameter is only avalaible in time measurement mode and R&S NRP-Z81 power sensors.

Parameters:

<Reference> float

Range: 0.0 to 100.0

Increment: 0.01 *RST: 50.0

Example: TRAC3:SWE:PULS:THR:POW:REF?

queries the medial threshold level of trace 3.

Manual operation: See "Mesial - Pulse Data Analysis" on page 234

:TRACe<ch>[:POWer]:SWEep:PULSe:THReshold:POWer:LREFerence

<LReference>

Queries the lower medial threshold level of the overall pulse level. The proximal power defines the start of the rising edge and the end of the falling edge of the pulse.

Note: This parameter is only avalaible in time measurement mode and R&S NRP-Z81 power sensors.

Parameters:

<LReference> float

Range: 0.0 to 100.0

Increment: 0.01 *RST: 10.0

Example: TRAC:SWE:PULS:THR:POW:LREF?

queries the medial threshold level of trace 1.

Manual operation: See "Proximal - Pulse Data Analysis" on page 235

:TRACe<ch>[:POWer]:SWEep:STATe <State>

Activates the selected trace.

Parameters:

<State> OFF | ON | HOLD

*RST: The preset value for each trace is evaluated during

runtime as follows: If a sensor is plugged into the generator whose number corresponds to the trace number, this sensor is used to feed the trace and the state of the trace is ON; If no sensor is found with a number corresponding to the trace number,

the preset value of the trace is "Off".

Example: TRAC2:SWE:COPY REF

stores trace2 as reference trace'

TRAC1:SWE:FEED REF

assigns the reference trace to trace 1.

TRAC1:SWE:STAT ON

assigns the reference trace to trace 1.

SENS: SWE: RMOD SING selects single measurement

SENS:SWE:INIT

starts the measurement

Manual operation: See "Indication - Power Analysis" on page 216

7.13 SOURce Subsystem

The SOURce subsystem contains the commands for configuring the digital and analog signals.

SOURce<hw>

For one-path instruments, the keyword SOURce is optional and can be omitted.

| • | SOURce:AM Subsystem | .450 |
|---|----------------------------|-------|
| • | SOURce:CHIRp Subsystem | . 452 |
| • | | |
| • | | |
| • | | |
| • | SOURce:FREQuency Subsystem | |
| • | | |
| • | | |
| • | SOURce:LIST Subsystem | |
| • | | |
| • | | |
| • | | |
| • | | |
| • | SOURce:PM Subsystem | |

| • | SOURce:POWer Subsystem | 526 |
|---|------------------------------|-----|
| | SOURce:PULM Subsystem | |
| | SOURce:ROSCillator Subsystem | |
| | SOURce:SWEep Subsystem | |

7.13.1 SOURce: AM Subsystem

The AM subsystem contains the commands for setting the amplitude modulation.

An external modulation signal is input at the EXT1, 2 connector.

The settings for the internal modulation source (LF generator) are made in the SOURce: LFOutput subsystem.

External modulation signal are input at the EXT1, 2 connectors.

| [:SOURce <hw>]:AM<ch>[:DEPTh]</ch></hw> | 450 |
|---|-----|
| [:SOURce <hw>]:AM:RATio</hw> | 450 |
| [:SOURce <hw>]:AM:SCAN:STATe</hw> | 451 |
| [:SOURce <hw>]:AM<ch>:SENSitivity</ch></hw> | 451 |
| [:SOURce <hw>]:AM<ch>:SOURce</ch></hw> | 451 |
| [:SOURce <hw>]:AM<ch>:STATe</ch></hw> | 452 |

[:SOURce<hw>]:AM<ch>[:DEPTh] <Depth>

Sets the depth of the amplitude modulation signal in percent.

Suffix:

<ch> 1..2

determines the modulation signal channel.

Parameters:

<Depth> float

Range: 0 to 100 Increment: 0.1 *RST: 30

Example: AM1:DEPT 15PCT

sets 15% modulation depth for in channel 1 (AM1).

Options: R&S SMF-B20

Manual operation: See "AM Depth" on page 260

[:SOURce<hw>]:AM:RATio <Ratio>

Sets the AM ratio (AM2 to AM 1) in percent.

Parameters:

<Ratio> float

Range: 0 to 100 Increment: 0.01 *RST: 100

Example: AM:RAT 50PCT

sets 50 percent AM2/AM1 ratio.

Options: R&S SMF-B20

Manual operation: See "Ratio" on page 260

[:SOURce<hw>]:AM:SCAN:STATe <State>

Activates logarithmic amplitude modulation.

Parameters:

<State> OFF | ON

*RST: 0

Example: AM:SCAN:STAT ON

activates the logarithmic amplitude modulation.

Options: R&S SMF-B20

Manual operation: See "Scan State" on page 260

[:SOURce<hw>]:AM<ch>:SENSitivity <Sensitivity>

Queries the sensitivity of the externally applied modulation signal at the EXT1, 2 connectors, provided scanning state is activated. The sensitivity depends on the set modulation [:SOURce<hw>]:AM<ch>[:DEPTh] on page 450.

The returned value reports the sensitivity in dB/V.

Suffix:

AM<ch> 1..2

determines the modulation signal channel.

Parameters:

<Sensitivity> float

Range: -10 to 10 Increment: 0.1 *RST: 1

Example: AM1:SENS 5

sets the input sensitivity to 5 dB/V for path 1.

Options: R&S SMF-B20

Manual operation: See "AM Sensitivity" on page 260

[:SOURce<hw>]:AM<ch>:SOURce<Source>

Selects the modulation signal source for amplitude modulation.

The external signal is input at the EXT1, 2 connectors. You can use both, the internal and an external modulation signal at a time.

Suffix:

AM<ch> 1..2

determines the modulation signal channel.

Parameters:

<Source> LF1 | LF2 | NOISe | EXT1 | EXT2 | EXTernal | INTernal

*RST: LF1 <AM1>; LF2 <AM2>

Example: AM1:SOUR LF1

selects the LF generator 1 as internal modulation source in dig-

nal channel 1.

Options: R&S SMF-B20

Manual operation: See "Source" on page 259

[:SOURce<hw>]:AM<ch>:STATe <State>

Activates amplitude modulation.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: AM:STAT ON

activates AM modulation.

Manual operation: See "State" on page 259

7.13.2 SOURce: CHIRp Subsystem

The ${\tt SOURCe:CHIRp}$ subsystem contains the commands for setting the modulation chirp.

Chirp modulation requires the following equipment:

- Option R&S SMF-B20, AM/FM/φM/LOG AM Modulator.
- Option R&S SMF-K23, High Performance Pulse Generator.
- Option R&S SMF-K3, Narrow Pulse Modulation, requires option R&S SMF-K23.

An external trigger signal is supplied via PULSE IN connector.

The keyword SOURce is optional and can be omitted.

| [:SOURce <hw>]:CHIRp:BANDwidth</hw> | 453 |
|--|-----|
| [:SOURce <hw>]:CHIRp:COMPression:RATio?</hw> | |
| [:SOURce <hw>]:CHIRp:DIRection</hw> | |
| [:SOURce <hw>]:CHIRp:PULSe:PERiod</hw> | 454 |
| [:SOURce <hw>]:CHIRp:PULSe:WIDTh</hw> | 454 |
| I:SOURce <hw>1:CHIRp:STATe</hw> | 454 |

| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:GATE:POLarity</hw> | 455 |
|--|-----|
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:IMPedance</hw> | 455 |
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:LEVel</hw> | 455 |
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:SLOPe</hw> | 456 |
| [:SOURce <hw>]:CHIRp:TRIGger:MODE</hw> | 456 |

[:SOURce<hw>]:CHIRp:BANDwidth <Bandwidth>

Sets the modulation bandwidth of the modulation chirp.

Parameters:

<Bandwidth> float

The maximal bandwidth depends on the installed frequency

options and the RF frequency (see data sheet).

For example, the maximum bandwidth is 160 MHz, if your instru-

ment is equipped with option R&S SMF-B144.

Range: 0 to Depends on hardware variant

Increment: 0.01 *RST: 1E3 Default unit: Hz

Example: CHIR:BAND 5E3

sets the modulation bandwidth to 5 kHz.

Manual operation: See "Bandwidth - Chirp Modulation" on page 274

[:SOURce<hw>]:CHIRp:COMPression:RATio?

Queries the pulse compression ratio, that is the product of pulse width (s) and bandwidth (Hz). Pulse compression increases the range resolution as well as the signal to noise ratio of pulsed signals.

Return values:

<Ratio> float

Range: 0 to 80E6 Increment: 0.01

Example: CHIR: COMP: RAT?

queries the compression ratio.

Usage: Query only

Manual operation: See "Compression Ratio - Chirp Modulation" on page 275

[:SOURce<hw>]:CHIRp:DIRection < Direction>

Selects the direction of the chirp modulation.

Parameters:

<Direction> DOWN | UP

UP

The chirp starts with the lower frequency.

DOWN

The chirp starts with the higher frequency.

*RST: UP

Example: SOUR:CHIR:DIR UP

Manual operation: See "Direction - Chirp Modulation" on page 273

[:SOURce<hw>]:CHIRp:PULSe:PERiod <Period>

Sets the period of the generated modulation chirp. The period determines the repetition frequency of the internal signal.

Parameters:

<Period> float

Range: 200E-9 to 100

Increment: 20E-9 *RST: 10E-6

Example: CHIR:PULS:PER 2 ms

the chirp period is 2 ms.

Manual operation: See "Pulse Period - Chirp Modulation" on page 274

[:SOURce<hw>]:CHIRp:PULSe:WIDTh <Width>

Sets the width of the generated pulse. The pulse width must be at least 1us less than the set pulse period.

Parameters:

<Width> float

Increment: 2E-9 *RST: 2E-6

Example: CHIR:PULS:WIDT 107 µs

sets a width of 107 μs for the pulse.

Manual operation: See "Pulse Width - Chirp Modulation" on page 275

[:SOURce<hw>]:CHIRp:STATe <State>

Activates the generation of modulation chirp.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: CHIR:STAT ON

activates chirp modulation.

Manual operation: See "State - Chirp Modulation" on page 273

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:GATE:POLarity <Polarity>

Selects the active level of the gate signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

Generates the chirp modulation signals while the gate signal is

high.

INVerted

Generates the chirp modulation signals while the gate signal is

low.

*RST: NORMal

Example: CHIR:TRIG:EXT:GATE:POL NORM

selects gate polarity normal.

Manual operation: See "Gate Input Polarity - Chirp Modulation" on page 275

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:IMPedance < Impedance >

Sets the impedance of the externally applied trigger signal.

Parameters:

<Impedance> G10k | G50

G10k

10 kOhm to ground

G50

50 ohm to ground *RST: G50

Example: CHIR:TRIG:EXT:IMP G10K

Manual operation: See "External Impedance - Chirp Modulation" on page 276

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:LEVel <Level>

Selects the external trigger level.

Parameters:

<Level> TTL | M2V5 | P0V5

TTL

trigger level is threshold TTL.

P₀V₅

trigger level is 0.5 V.

M2V5

trigger level is -2.5 V. *RST: TTL

Example: CHIRP:TRIG:EXT:LEV TTL

selects threshold TTL as external trigger level.

Manual operation: See "Trigger Level – Chirp Modulation" on page 275

[:SOURce<hw>]:CHIRp:TRIGger:EXTernal:SLOPe <Slope>

Sets the active slope of an externally applied trigger signal.

Parameters:

<Slope> NEGative | POSitive

*RST: POSitive

Example: CHIR:TRIG:EXT:SLOP

the active slope of the external trigger signal is the falling slope.

Manual operation: See "External Trigger Input Slope - Chirp Modulation"

on page 275

[:SOURce<hw>]:CHIRp:TRIGger:MODE <Mode>

Selects the trigger mode for modulation chirp.

Parameters:

<Mode> AUTO | EXTernal | EGATe

AUTO

Generates the modulation chirp continuously.

EXTernal

Generates the chirp modulation signal initiated by an external

trigger event.

EGATe

Generates the chirp modulation signal during the gate of an

externally applied gate signal.

*RST: AUTO

Example: CHIR:TRIG:EXT:MODE EXT

selects triggering by an external trigger event.

Manual operation: See "Trigger Mode - Chirp Modulation" on page 275

7.13.3 SOURce:CORRection Subsystem

The output level is corrected in the CORRection subsystem. Correction is performed by user-defined table values being added to the output level for the respective RF frequency. In the R&S SMF, this subsystem is used to select, transfer and activate user correction tables.

Each list is stored as a file. The name of the user correction file can be freely selected. The file extension *.uco is assigned automatically and cannot be changed.

The files can be stored in a freely selectable directory and opened from there. The default directory is set using command : MMEMory: CDIRectory on page 381. In the case of files which are stored in the default directory, only the file name has to be specified in commands. Otherwise, the complete absolute path has to be specified with every command. The extension can be omitted in any case.

In the following command examples, the files are stored in the default directory.

The amplitude can also be linearized automatically by means of a R&S NRP power sensor connected to the generator output signal. With the aid of the command [: SOURce<hw>]:CORRection:CSET:DATA[:SENSor<ch>][:POWer]:SONCe, a list with correction values for external test assemblies can be automatically determined, e.g. for compensating the frequency response of cables. The correction values can be acquired any time irrespective of the modulation settings of the generator.

| [:SOURce]:CORRection:CSET:CATalog? | 458 |
|--|-----|
| [:SOURce <hw>]:CORRection:CSET:DATA:FREQuency</hw> | 458 |
| [:SOURce <hw>]:CORRection:CSET:DATA:FREQuency:POINts?</hw> | 458 |
| [:SOURce <hw>]:CORRection:CSET:DATA:POWer</hw> | 459 |
| [:SOURce <hw>]:CORRection:CSET:DATA:POWer:POINts?</hw> | 459 |
| [:SOURce <hw>]:CORRection:CSET:DATA[:SENSor<ch>][:POWer]:SONCe</ch></hw> | 459 |
| [:SOURce]:CORRection:CSET:DELete | 460 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:CATalog?</hw> | 460 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:EXTension</hw> | 461 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SELect</hw> | 461 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SEParator:COLumn</hw> | 461 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SEParator:DECimal</hw> | 462 |
| [:SOURce <hw>]:CORRection:DEXChange:EXECute</hw> | 462 |
| [:SOURce <hw>]:CORRection:DEXChange:MODE</hw> | 463 |
| [:SOURce <hw>]:CORRection:DEXChange:SELect</hw> | |
| [:SOURce <hw>]:CORRection:CSET[:SELect]</hw> | 464 |
| [:SOURce <hw>]:CORRection:MEASure</hw> | 464 |
| [:SOURce <hw>]:CORRection:PMETer:TYPE</hw> | 464 |
| [:SOURce <hw>]:CORRection[:STATe]</hw> | 465 |
| [:SOURce <hw>]:CORRection:VALue?</hw> | 465 |
| I:SOURce <hw>1:CORRection:7FRoing:STATe</hw> | 465 |

[:SOURce]:CORRection:CSET:CATalog?

Requests a list of user correction tables. The individual lists are separated by commas.

The lists are stored with the fixed file extensions *.uco in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/user/ucor'

selects the directory for the user correction files.

CORR: CSET: CAT?

queries which correction tables are available.

Response: UCOR1, UCOR2, UCOR3

the correction tables UCOR1, UCOR2 and UCOR3 are availa-

ble.

Usage: Query only

Manual operation: See "Directory, File List and File Name" on page 142

[:SOURce<hw>]:CORRection:CSET:DATA:FREQuency <Frequency>

Transfers the frequency data to the table selected with : CORRection: CSET: SELect.

The numerical suffix at SOURce must not be used for this command.

Parameters:

<Frequency> Frequency#1[, Frequency#2, ...]

Range: 300 kHz to RFmax (depending on model)

Example: CORR:CSET '/var/user/ucor1'

selects the table ucor1.

CORR:CSET:DATA:FREQ 100MHz,102MHz,103MHz,...

enters the frequency value in the table ucor1.

Manual operation: See "Edit User Cor. Data - User Correction" on page 249

[:SOURce<hw>]:CORRection:CSET:DATA:FREQuency:POINts?

The command queries the number of frequency values in the selected table.

The numerical suffix at SOURce must not be used for this command.

Return values:

<Points> integer

Range: 0 to 10000

*RST: 0

Example: CORR:CSET '/var/user/'

selects the table ucor1.

CORR:CSET:DATA:FREQ:POIN?

queries the number of frequency values in the table ucor1.

Response: 440

the table ucor1 contains 440 frequency values.

Usage: Query only

[:SOURce<hw>]:CORRection:CSET:DATA:POWer <Power>

Transfers the level data to the table selected with [:SOURce<hw>]:CORRection: CSET[:SELect].

*RST does not affect data lists. The numerical suffix at SOURce must not be used for this command.

Parameters:

<Power> Power#1[, Power#2, ...]

Example: CORR:CSET '/var/user/ucor1'

selects the table ucor1.

CORR:CSET:DATA:POW 1dB, 0.8dB, 0.75dB,...

enters the level values in the table ucor1.

Manual operation: See "Edit User Cor. Data - User Correction" on page 249

[:SOURce<hw>]:CORRection:CSET:DATA:POWer:POINts?

Queries the number of level values in the selected table.

The numerical suffix at SOURce must not be used for this command.

Return values:

<Points> integer

Range: 0 to 10000

*RST: 0

Example: CORR:CSET '/var/user/ucor1'

selects the table ucor1.

CORR:CSET:DATA:POW:POIN?

queries the number of level values in the table ucor1.

Response: 440

the table ucor1 contains 440 level values.

Usage: Query only

[:SOURce<hw>]:CORRection:CSET:DATA[:SENSor<ch>][:POWer]:SONCe

The command fills the selected user correction list with the level values measured by the power sensor for the given frequencies.

To select the used power sensor set the suffix in key word SENSe.

Example: CORR:CSET:DATA:SENS:POW:SONC

fills the user correction list with level values acquired by the

power sensor connector to the SENSOR connector.

Usage: Event

Manual operation: See "Fill User Correction Data with Sensor" on page 254

[:SOURce]:CORRection:CSET:DELete <Filename>

Deletes the specified table.

The lists are stored with the fixed file extensions *.uco in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. A path can also be specified in command SOUR:CORR:CSET:CAT?, in which case the file in the specified directory is deleted.

Setting parameters:

<Filename>

Example: MMEM:CDIR '/var/user/ucor'

selects the directory for the user correction files.

CORR:CSET:DEL 'UCOR1' deletes the table ucor1.

Usage: Setting only

Manual operation: See "User Cor. Data - User Correction" on page 248

[:SOURce<hw>]:CORRection:DEXChange:AFILe:CATalog?

Requests a list of available ASCII files for export/import of user correction data. The individual files are separated by commas.

The ASCII files are stored with the fixed file extensions *.txt or *.csv in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/user/import'

selects the directory for the ASCII files with frequency and level

value pairs.

CORR:DEXC:AFIL:EXT TXT

selects that ASCII files with extension *.txt are listed.

CORR: DEXC: AFIL: CAT?

queries the available files with extension *.txt.

Response: 'ucor1, ucor2'

the ASCII files ucor1.txt and ucor2.txt are available.

Usage: Query only

[:SOURce<hw>]:CORRection:DEXChange:AFILe:EXTension < Extension>

Selects the file extension of the ASCII file to be imported or exported. Selection TXT (text file) or CSV (Excel file) is available.

Parameters:

<Extension> TXT | CSV

*RST: TXT

Example: MMEM:CDIR '/var/user/import'

selects the directory for the ASCII files with frequency and level

value pairs.

CORR:DEXC:AFIL:EXT TXT

selects that ASCII files with extension *.txt are listed.

CORR: DEXC: AFIL: CAT?

queries the available files with extension *.txt.

Response: 'list1, list2'

the ASCII files ucor1.txt and ucor2.txt are available.

Manual operation: See "Extension - User Correction" on page 251

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SELect <Filename>

Selects the ASCII file to be imported or exported.

The ASCII files are stored with the fixed file extensions *.txt or *.csv in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. A path can also be specified in command SOUR:CORR:DEXC:AFIL:SEL, in which case the files are stored or loaded in the specified directory.

Parameters:

<Filename> <ascii file name>

Example: CORR: DEXC: MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into user correction lists.

CORR:DEXC:AFIL:SEL '/var/user/import_ucor.csv'

selects that ASCII file ucor.csv is imported.

CORR: DEXC: SEL '/var/user/import_ucor_imp' selects that the ASCII file ucor.csv is imported into user cor-

rection list ucor imp.

Manual operation: See "Select ASCII Source / Destination - User Correction"

on page 251

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SEParator:COLumn < Column>

Selects the separator between the frequency and level column of the ASCII table.

Parameters:

<Column> TABulator | SEMicolon | COMMa | SPACe

*RST: COMMa

Example: CORR: DEXC: MODE EXP

selects that the user correction list is exported into an ASCII file. CORR: DEXC: AFIL: SEL '/var/user/import_ucor.csv' selects ASCII file ucor.csv as destination for the user correction

list data.

CORR:DEXC:AFIL:SEP:COL TAB

the pairs of frequency and level values are separated by a tabu-

lator.

CORR: DEXC: AFIL: SEP: DEC DOT selects the decimal separator dot.

CORR: DEXC: SEL '/var/user/import_ucor_imp' selects that the user correction list ucor imp is imported into

ASCII file ucor.csv.

Manual operation: See "Column Separator- User Correction" on page 251

[:SOURce<hw>]:CORRection:DEXChange:AFILe:SEParator:DECimal < Decimal>

Selects the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Parameters:

<Decimal> DOT | COMMa

*RST: DOT

Example: CORR: DEXC: MODE EXP

selects that the user correction list is exported into an ASCII file. CORR: DEXC: AFIL: SEL '/var/user/import_ucor.csv' selects ASCII file ucor.csv as destination for the user correction

list data.

CORR: DEXC: AFIL: SEP: COL TAB

the pairs of frequency and level values are separated by a tabu-

lator.

CORR: DEXC: AFIL: SEP: DEC DOT selects the decimal separator dot.

CORR: DEXC: SEL '/var/user/import ucor imp'

selects that the user correction list ucor imp is imported into

ASCII file ucor.csv.

Manual operation: See "Decimal Point - User Correction" on page 251

[:SOURce<hw>]:CORRection:DEXChange:EXECute

Starts the export or import of the selected file. When import is selected, the ASCII file is imported as user correction list. When export is selected, the user correction list is exported into the selected ASCII file.

Example: CORR: DEXC: MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into user correction lists.

CORR: DEXC: AFIL: SEL '/var/user/import ucor.csv'

selects that ASCII file ucor.csv is imported.

CORR: DEXC: SEL '/var/user/import_ucor_imp' selects that the ASCII file ucor.csv is imported into user cor-

rection list ucor_imp.
CORR:DEXC:EXEC

starts the import of the ASCII file data into the user correction

file.

Usage: Event

Manual operation: See "Import / Export - User Correction" on page 252

[:SOURce<hw>]:CORRection:DEXChange:MODE <Mode>

Selects if user correction lists should be imported or exported. Depending on the selection her, the file select command define either the source or the destination for user correction lists and ASCII files.

Parameters:

<Mode> IMPort | EXPort

*RST: IMPort

Example: CORR:DEXC:MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into user correction lists.
CORR:DEXC:AFIL:SEL '/var/user/ucor.csv'

selects that ASCII file ucor.csv is imported.
CORR: DEXC: SEL '/var/user/ucor_imp'

selects that the ASCII file ucor.csv is imported into user cor-

rection list ucor imp.

Manual operation: See "Mode - User Correction" on page 251

[:SOURce<hw>]:CORRection:DEXChange:SELect <Filename>

Selects the user correction list to be imported or exported.

The user correction files are stored with the fixed file extensions *.uco in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. A path can also be specified in command SOUR:CORR:DEXC:SEL, in which case the files are stored or loaded in the specified directory.

Parameters:

<Filename> string

Example: CORR: DEXC: MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into user correction lists.

CORR: DEXC: AFIL: SEL '/var/user/import ucor.csv'

selects that ASCII file ucor.csv is imported.

CORR: DEXC: SEL '/var/user/import_ucor_imp' selects that the ASCII file ucor.csv is imported into user cor-

rection list ucor imp.

Manual operation: See "Destination / Source - User Correction" on page 252

[:SOURce<hw>]:CORRection:CSET[:SELect] <Filename>

Selects or creates a file for the user correction data.

If the file does not exist, the instrument automatically creates a new file with the name you assigned. Note the predefined file extensions under Chapter 4.7.2.1, "Extensions for User Files", on page 97.

To determine the file location (directory/path) you can either enter it with the command directly, or use the command MMEMory: CDIR.

To activate level correction use the command [:SOURce<hw>]:CORRection[:STATe].

Parameters:

<Filename>

Example: CORR:CSET '/var/user/ucor1'

selects the table ucor1.

CORR ON

activates level correction. Correction is performed using the

table ucor1.

Manual operation: See "User Cor. Data - User Correction" on page 248

[:SOURce<hw>]:CORRection:MEASure

The command triggers the external measurement of the user correction of the level according to the user defined frequencies.

Example: SOUR: CORR: MEAS

triggers the external measurement of the user correction of the

level according to the user defined frequencies.

Usage: Event

Manual operation: See "Measure – User Correction" on page 248

[:SOURce<hw>]:CORRection:PMETer:TYPE <Type>

The command selects the power meter used for user correction.

Parameters:

<Type> NRP | NRVD | HP437 | ML2438 | P44X

*RST: NRP

Example: SOUR:CORR:PMET:TYPE NRVD

the specified power meter is used for user correction.

Manual operation: See "User Correction Value - User Correction" on page 248

[:SOURce<hw>]:CORRection[:STATe] <State>

Activates/deactivates level correction. Level correction is performed using the table which has been selected with the command [:SOURce<hw>]:CORRection:CSET[:SELect].

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SOUR:CORR:CSET '/var/user/ucor1'

selects the table ucor1.

SOUR: CORR ON

activates user correction.

Manual operation: See "State - User Correction" on page 248

[:SOURce<hw>]:CORRection:VALue?

Queries the current value for user correction.

Return values:

<Value> float

Range: -100 to 100

Increment: 0.01 *RST: 0

Example: CORR: VAL?

queries the value currently used for level correction.

Response: -3

the correction value is - 3 dB.

Usage: Query only

Manual operation: See "User Correction Value - User Correction" on page 248

[:SOURce<hw>]:CORRection:ZERoing:STATe <State>

Activates the zeroing procedure before filling the user correction data acquired y a sensor.

Parameters:

<State> 0 | 1 | OFF | ON

Manual operation: See "Fill User Correction Data with Sensor" on page 254

7.13.4 SOURce: DM Subsystem

This section contains the commands for generating the digital modulation signal. Two external inputs (EXT1 and EXT2) are available as data source. The settings for the external inputs are independently of the type of modulation selected.

| [:SOURce <hw>]:DM:ASK:DEPTh</hw> | 466 |
|--|-----|
| [:SOURce <hw>]:DM:ASK:SOURce</hw> | |
| [:SOURce <hw>]:DM:ASK:STATe</hw> | 467 |
| :
[:SOURce <hw>]:DM:EXTernal:POLarity<ch></ch></hw> | 467 |
| [:SOURce <hw>]:DM:FSK:DEViation</hw> | 468 |
| [:SOURce <hw>]:DM:FSK:SOURce</hw> | 468 |
| [:SOURce <hw>]:DM:FSK:STATe</hw> | 468 |
| [:SOURce <hw>]:DM:PSK:DEViation</hw> | 469 |
| [:SOURce <hw>]:DM:PSK:SOURce</hw> | 469 |
| [:SOURce <hw>]:DM:PSK:STATe</hw> | 469 |
| - | |

[:SOURce<hw>]:DM:ASK:DEPTh <Depth>

The command sets the modulation depth for ASK modulation.

Parameters:

<Depth> float

Range: 0 to 100 Increment: 0.01 *RST: 30 PCT

Example: SOUR: DM: ASK 30PCT

sets the modulation depth for the amplitude modulation to 30%.

Options: R&S SMF-B20

Manual operation: See "Depth – ASK" on page 268

[:SOURce<hw>]:DM:ASK:SOURce <Source>

The command selects the source for the ASK modulation signal.

Parameters:

<Source> EXT1 | EXT2 | PGENerator | RANDom

EXT 1/EXT 2

Selects the external inputs (either EXT1 or EXT2) as the source

for ASK modulation.

PGEN

Selects the internal pulse generator as source for ASK modula-

tion.

RAND

Selects random pulses generated by the noise generator as the

source for ASK modulation.

*RST: EXT1

Example: SOUR:DM:ASK:SOUR EXT1

selects the external input EXT1 as source for the amplitude

modulation signal.

Options: R&S SMF-B20

Manual operation: See "Source – ASK" on page 268

[:SOURce<hw>]:DM:ASK:STATe <State>

The command activates/deactivates the ASK modulation.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: OFF

Example: SOUR: DM: ASK: STAT ON

activates the amplitude modulation.

Options: R&S SMF-B20

Manual operation: See "State – ASK" on page 268

[:SOURce<hw>]:DM:EXTernal:POLarity<ch> <Polarity>

Sets the polarity of the external modulation signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

The RF level is **ON** while the level is **HIGH**.

INVerted

The RF level is **ON** while the level is **LOW**.

*RST: NORMal

Example: SOUR:DM:EXT:POL NORM

sets the marker output polarity to normal.

Options: R&S SMF-B20

Manual operation: See "Polarity – External Inputs" on page 258

[:SOURce<hw>]:DM:FSK:DEViation < Deviation>

The command sets the frequency deviation for FSK modulation.

Parameters:

<Deviation> float

Range: 0.0 Hz to 50.0 MHz

Increment: 0.1 Hz *RST: 10 MHz

Example: SOUR: DM: FSK: DEV 20 MHz

sets the deviation to 20 MHz.

Options: R&S SMF-B20

Manual operation: See "Deviation – FSK" on page 269

[:SOURce<hw>]:DM:FSK:SOURce <Source>

Selects the source for the FSK modulation signal.

Parameters:

<Source> EXT1 | EXT2 | PGENerator | RANDom

EXT 1|EXT 2

Selects the external inputs (either EXT1 or EXT2) as the source

for FSK modulation.

PGEN

Selects the internal pulse generator as source for FSK modula-

tion.

RAND

Selects random pulses generated by the noise generator as the

source for FSK modulation.

*RST: EXT1

Example: SOUR:DM:FSK:SOUR EXT1

selects the external input EXT1 as source for the frequency

modulation signal.

Options: R&S SMF-B20

Manual operation: See "Source – FSK" on page 268

[:SOURce<hw>]:DM:FSK:STATe <State>

The command activates/deactivates the FSK modulation.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SOUR: DM: FSK: STAT ON

activates the frequency modulation.

Options: R&S SMF-B20

Manual operation: See "State – FSK" on page 268

[:SOURce<hw>]:DM:PSK:DEViation < Deviation>

The command sets the phase deviation for PSK modulation.

Parameters:

<Deviation> float

Range: 0 to 100 Increment: 0.1 *RST: 30 RAD

Example: SOUR:DM:PSK:DEV 30RAD

sets the deviation to 30 RAD.

Options: R&S SMF-B20

Manual operation: See "Deviation – PSK" on page 269

[:SOURce<hw>]:DM:PSK:SOURce <Source>

The command selects the source for the PSK modulation signal.

Parameters:

<Source> EXT1 | EXT2 | PGENerator | RANDom

EXT 1/EXT 2

Selects the external inputs (either EXT1 or EXT2) as the source

for PSK modulation.

PGEN

Selects the internal pulse generator as source for PSK modula-

tion.

RAND

Selects random pulses generated by the noise generator as the

source for PSK modulation.

*RST: EXT1

Example: SOUR: DM: PSK: SOUR EXT1

selects the external input EXT1 as source for the phase modula-

tion signal.

Options: R&S SMF-B20

Manual operation: See "Source – PSK" on page 269

[:SOURce<hw>]:DM:PSK:STATe <State>

The command activates/deactivates the PSK modulation.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SOUR: DM: PSK: STAT ON

activates the phase modulation.

Options: R&S SMF-B20

Manual operation: See "State – PSK" on page 269

7.13.5 SOURce:FM Subsystem

The FM subsystem contains the commands for checking the frequency modulation.

Characteristics which are valid for all modulations and the LF Output are configured in the <code>SOURce:LFOutput</code> subsystem (e.g. frequency). The external signal is input at the EXT1 and/or EXT2 connector. Internal and external modulation source can be selected at the same time, thus enabling two-tone FM modulation.

For information about the required options, see Chapter 5.5.3, "Frequency Modulation (FM)", on page 261.

| [:SOURce <hw>]:FM<ch>[:DEViation]</ch></hw> | 470 |
|---|-----|
| [:SOURce <hw>]:FM:MODE</hw> | 471 |
| [:SOURce <hw>]:FM:RATio</hw> | |
| [:SOURce <hw>]:FM<ch>:SOURce</ch></hw> | |
| [:SOURce <hw>]:FM<ch>:STATe</ch></hw> | |

[:SOURce<hw>]:FM<ch>[:DEViation] < Deviation>

Sets the deviation of the frequency modulation signal in Hz. The maximum deviation depends on the set RF frequency and the selected modulation mode (see data sheet).

Suffix:

<ch> 1..2

determines the modulation signal channel.

Parameters:

<Deviation> float

Range: see data sheet

Increment: 0.1 *RST: 10E3

Example: FM1:DEV 3kHz

sets 3 kHz deviation for the frequency modulation signal in chan-

nel 1 (FM1).

Options: R&S SMF-B20

Manual operation: See "FM Deviation" on page 262

[:SOURce<hw>]:FM:MODE <Mode>

Selects the mode for the frequency modulation.

Parameters:

<Mode> NORMal | LNOise

NORMal

Provides full setting range of modulation bandwidth and FM

deviation.

LNOise

Provides phase noise and spurious characteristics close to CW.

The range for modulation bandwidth and FM deviation is

reduced (see data sheet).

*RST: NORM

Example: FM:MODE NORM

selects normal mode for external frequency modulation.

Options: R&S SMF-B20

Manual operation: See "Mode (Frequency Modulation)" on page 263

[:SOURce<hw>]:FM:RATio <Ratio>

Sets the FM ratio (FM2 to FM 1) in percent.

Parameters:

<Ratio> float

Range: 0 to 100 Increment: 0.01 *RST: 100

Example: FM:RAT 40PCT

sets 40 percent FM2/FM1 ratio.

Options: R&S SMF-B20

Manual operation: See "Ratio FM 2/1" on page 263

[:SOURce<hw>]:FM<ch>:SOURce <Source>

Selects the modulation signal source for frequency modulation.

Suffix:

FM<ch> 1..2

determines the modulation signal channel.

Parameters:

<Source> LF1 | LF2 | NOISe | EXT1 | EXT2 | INTernal | EXTernal

*RST: LF1 <FM1>; LF2 <FM2>

Example: FM1:SOUR LF2

selects the LF generator 2 as internal modulation source in sig-

nal channel 1.

Options: R&S SMF-B20

Manual operation: See "Source" on page 262

[:SOURce<hw>]:FM<ch>:STATe <State>

Activates frequency modulation.

Activation of frequency modulation deactivates phase modulation.

Note: Activation of FM deactivates phase modulation (PM).

Suffix:

FM<ch> 1..2

determines the modulation signal channel.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: FM1:STAT ON

activates FM modulation for signal channel 1.

Options: R&S SMF-B20

Manual operation: See "State" on page 262

7.13.6 SOURce:FREQuency Subsystem

This subsystem contains the commands used to define the frequency settings for the RF sources and sweeps.

| [:SOURce <hw>]:FREQuency:CENTer</hw> | 472 |
|--|-----|
| [:SOURce <hw>]:FREQuency[:CW FIXed]</hw> | 473 |
| [:SOURce <hw>]:FREQuency[:CW FIXed]:RCL</hw> | 474 |
| [:SOURce <hw>]:FREQuency:MANual</hw> | 474 |
| [:SOURce <hw>]:FREQuency:MODE</hw> | 475 |
| [:SOURce <hw>]:FREQuency:MULTiplier</hw> | 476 |
| [:SOURce <hw>]:FREQuency:OFFSet</hw> | 476 |
| [:SOURce <hw>]:FREQuency:PLL:MODE</hw> | 477 |
| [:SOURce <hw>]:FREQuency:SPAN</hw> | 477 |
| [:SOURce <hw>]:FREQuency:STARt</hw> | 477 |
| [:SOURce <hw>]:FREQuency:STOP</hw> | 478 |
| [:SOURce <hw>]:FREQuency:STEP[:INCRement]</hw> | 479 |
| [:SOURce <hw>]:FREQuency:STEP:MODE</hw> | 479 |
| | |

[:SOURce<hw>]:FREQuency:CENTer <Center>

Sets the center frequency of the RF sweep range.

The range is defined by this center frequency and the specified [:SOURce<hw>]: FREQuency:SPAN, according to the formula:

$$f_{CENTer}$$
 - $(f_{SPAN}/2)$... f_{CENTer} + $(f_{SPAN}/2)$

with:

$$f_{SPAN} = f_{STOP} - f_{STARt}$$

The center frequency directly relates to the span, and the start and stop frequencies. If you change one of these parameters, the center frequency changes accordingly.

$$f_{CENTer} = (f_{STOP} + f_{STARt})/2$$

Note: You can select any frequency within the setting range. The range is defined with the parameters [:SOURce<hw>]:FREQuency:STARt and [:SOURce<hw>]:FREQuency:STOP.

A defined offset and the multiplier factor affect the sweep frequency range and therefore all correlated parameters. The set frequencies are only absolute values, if the offset = 0 and the multiplication factor = 1. The multiplier multiplies the frequencies accordingly, and the offset \neq 0 shifts the frequencies corresponding to the set value.

Parameters:

<Center> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: depends on model

Example: FREQ:CENT 400 MHz

sets the center frequency for the frequency sweep to 400 MHz.

FREQ:SPAN 200 MHz

sets a span of 200 MHz. This sets the sweep range to 300 MHz

to 500 MHz.

Manual operation: See "Center Freq - Frequency Sweep" on page 167

[:SOURce<hw>]:FREQuency[:CW|FIXed] <Fixed>

Sets the frequency of the RF output signal.

In CW mode, see FREQ:MODE CW|FIXed, the instrument operates at a fixed frequency.

In sweep mode FREQ:MODE SWE, the value applies to the sweep frequency and the instrument processes the frequency settings in defined sweep steps.

You can enter either a numerical frequency value, of decrease or increase the current frequency step by step with FREQ UP and FREQ DOWN. The frequency is then increased or decreased by the value [:SOURCe<hw>]:FREQuency:STEP[:INCRement] in FREQ:STEP:MODE USER.

Note:

A defined offset and the multiplier factor affect the sweep range and therefore all correlated parameters. The set frequencies are only absolute values, if the offset = 0 and the multiplication factor = 1. The multiplier multiplies the frequencies accordingly, and the offset \neq 0 shifts the frequencies corresponding to the set value.

The actual frequency at the RF output does not change, but rather the value queried with [:SOUR]:FREQ?, according to the formula:

$$f_{FREQ} = f_{RFout} * f_{MULTiplier} + f_{OFFSet}$$

Correlation: FREQ for FREQ: MODE SWE is linked to the sweep frequency.

Parameters:

<Fixed> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: 100 MHz

Example: FREQ 15GHz

sets the frequency of RF output signal to 15 GHz.

Manual operation: See "RF Freq" on page 152

[:SOURce<hw>]:FREQuency[:CW|FIXed]:RCL <Rcl>

Determines whether the RF frequency value is retained or taken from a loaded instrument configuration, when you recall instrument settings with the command *RCL.

Parameters:

<Rcl> INCLude | EXCLude

INCLude

Takes the frequency value of the loaded settings.

EXCLude

Retains the current frequency when an instrument configuration

is loaded.

*RST: INCLude

Example: FREQ:RCL INCL

takes the frequency from the loaded instrument configuration.

Manual operation: See "Exclude Frequency" on page 144

[:SOURce<hw>]:FREQuency:MANual <Manual>

Determines the frequency and triggers a sweep step manually in SWE:MODE MAN.

Note: You can select any frequency within the setting range. The range is defined with the parameters [:SOURce<hw>]:FREQuency:STARt and [:SOURce<hw>]: FREQuency:STOP. A defined offset and the multiplier factor affect the sweep range and therefore all correlated parameters. The set frequencies are only absolute values, if the offset = 0 and the multiplication factor = 1. The multiplier multiplies the frequencies accordingly, and the offset \neq 0 shifts the frequencies corresponding to the set value.

f_{STARt} * f_{MULTiplier} + f_{OFFset} ... f_{STOP} * f_{MULTiplier} + f_{OFFset}

Parameters:

<Manual> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

Example: SWE:MODE MAN

sets the Step sweep mode.

Example: FREQ:MODE SWE

sets the frequency sweep mode. The sweep start frequency is

output.

FREQ:MAN UP

triggers the next higher sweep step.

FREQ:MAN 500MHz

outputs 500 MHz RF frequency (must e within the sweep fre-

quency range).
FREQ:MAN DOWN

triggers the next lower sweep step relative to 500 MHz.

Manual operation: See "Current Freq - Frequency Sweep" on page 167

[:SOURce<hw>]:FREQuency:MODE <Mode>

Selects the frequency mode for the generating the RF output signal. The selected mode determines the parameters to be used for further frequency settings.

Parameters:

<Mode> CW | FIXed | SWEep | LIST

CW|FIXed

Sets the fixed frequency mode.

CW and FIXed are synonyms. The instrument operates at a defined frequency, set with command [:SOURce<hw>]:

FREQuency[:CW|FIXed]..

SWEep

Sets the sweep mode. The instrument processes the frequency settings in defined sweep steps. To determine the corresponding frequency values, use the commands [:SOURce<hw>]:

FREQuency:STARt and [:SOURce<hw>]:FREQuency:STOP,

or [:SOURce<hw>]:FREQuency:CENTer and [:

SOURce<hw>]:FREQuency:SPAN and [:SOURce<hw>]:

FREQuency: MANual.

LIST

Sets the list mode. The instrument processes the frequency and

level settings by means of values loaded from a list.

To configure the list mode settings use the commands of the

SOURce:LIST Subsystem

*RST: CW

Example: FREQ:MODE SWE

sets the SWEep mode.

Manual operation: See "State - Frequency Sweep" on page 164

[:SOURce<hw>]:FREQuency:MULTiplier < Multiplier>

Sets the value for the multiplication factor of a subsequent downstream instrument.

Parameters:

<Multiplier> float

Range: 1 to dynamic

Increment: 0.001 *RST: 1

Example: FREQ:MULT 1

sets the multiplication factor to 1.

Manual operation: See "Multiplier" on page 154

[:SOURce<hw>]:FREQuency:OFFSet <Offset>

Sets the frequency offset of a downstream instrument, for example a mixer.

If you have specified an OFFSet and / or a MULTiplier factor, the actual frequency at the RF output does not change, but rather the value queried with [:SOUR]:FREQ?, according to the following formula:

 $f_{FREQ} = f_{RFout} * f_{MULTiplier} + f_{OFFSet}$

Parameters:

<Offset> float

Increment: 0.01 *RST: 0

Example: FREQ:OFFS 500kHz

sets the frequency offset to 500 kHz.

Manual operation: See "Offset" on page 153

[:SOURce<hw>]:FREQuency:PLL:MODE <Mode>

Sets the bandwidth of the main PLL (Phase Locked Loop).

Parameters:

<Mode> NORMal | NARRow

*RST: NORMal

Manual operation: See "Main PII Bandwidth" on page 154

[:SOURce<hw>]:FREQuency:SPAN

Determines the extent of the frequency sweep range. This setting in combination with the center frequency setting ([:SOURce<hw>]:FREQuency:CENTer) defines the sweep range.

This parameter is related to the start and stop frequencies. If you change the frequency, the span changes accordingly.

 $f_{SPAN} = f_{STOP} - f_{STARt}$

 $f_{STARt} > f_{STOP}$ is permitted.

Parameters:

 float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: 400E6

Example: FREQ:CENT 400 MHz

sets the center frequency of the frequency sweep to 400 MHz.

FREQ:SPAN 200 MHz

sets a span of 200 MHz. This sets the sweep range to 300 MHz

to 500 MHz.

Manual operation: See "Span - Frequency Sweep" on page 167

[:SOURce<hw>]:FREQuency:STARt <Start>

Sets the start frequency for the RF sweep.

This parameter relates to the center frequency and span. If you change the frequency, these parameters change accordingly.

 $f_{STARt} > f_{STOP}$ is permitted.

$$f_{STARt} = (f_{CENTer} - f_{SPAN}/2).$$

Note: A defined offset and the multiplier factor affect the sweep range and therefore all correlated parameters. The set frequencies are only absolute values, if the offset = 0 and the multiplication factor = 1. The multiplier multiplies the frequencies accordingly, and the offset $\neq 0$ shifts the frequencies corresponding to the set value.

$$f_{STARt} * f_{MULTiplier} + f_{OFFset} \dots f_{STOP} * f_{MULTiplier} + f_{OFFset}$$

Parameters:

<Start> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: 100 MHz

Example: FREQ:STARt 1 MHz

sets the start frequency for the frequency sweep to 1 MHz.

FREQ:STOP 2 GHz

sets the stop frequency for the frequency sweep to 2 GHz.

Manual operation: See "Start Freq - Frequency Sweep" on page 167

[:SOURce<hw>]:FREQuency:STOP <Stop>

Sets the stop frequency for the RF sweep.

This parameter is related to the center frequency and span. If you change the frequency, these parameters change accordingly.

 $f_{STARt} > f_{STOP}$ is permitted.

$$f_{STOP} = (f_{CENTer} + f_{SPAN}/2).$$

Note: A defined offset affects the sweep range and consequently all correlating parameters. The set frequencies are only absolute values, if the Offset = 0. Offset \neq 0 shifts the frequencies according to the offset value.

$$f_{STARt} * f_{MULTiplier} + f_{OFFSet} \dots f_{STOP} * f_{MULTiplier} + f_{OFFSet}$$

Parameters:

<Stop> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: 500 MHz

Example: FREQ:STOP 2 GHz

sets the stop frequency for the frequency sweep to 2 GHz.

FREQ:STAR 1 MHz

sets the start frequency for the frequency sweep to 1 MHz.

Manual operation: See "Stop Freq - Frequency Sweep" on page 167

[:SOURce<hw>]:FREQuency:STEP[:INCRement] < Increment>

Sets the step width for FREQ:STEP:MODE USER.

To adjust the frequency step by step with this step size, use the FREQ: UP and FREQ: DOWN commands.

Note: This value also applies to the step width of the rotary knob of the instrument and increases or decreases the frequency accordingly, when you work in user-defined step mode.

Parameters:

<Increment> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

*RST: 1E6

Example: FREQ:STEP 50 kHz

sets the step width for the frequency setting to 50 kHz.

Manual operation: See "Variation Step" on page 155

[:SOURce<hw>]:FREQuency:STEP:MODE <Mode>

Activates (USER) or deactivates (DECimal) the user-defined step width used when varying the frequency value with the frequency values UP/DOWN. The command is linked to the command "Variation Active" for manual control, i.e. the command also activates/deactivates the user-defined step width used when varying the frequency value with the rotary knob.

Parameters:

<Mode> DECimal | USER

*RST: DECimal

Example: FREQ:STEP 50 kHz

sets the step width for the frequency setting to 50 kHz.

FREQ:STEP:MODE USER

actives this step width for frequency variation with the rotary knob (manual control) and with frequency values ${\tt UP/DOWN}$

(remote control).

Manual operation: See "Variation Active" on page 154

7.13.7 SOURce: INPut Subsystem

The SOURce: INPut subsystem contains the commands for configuring the inputs for external modulation signals. The instrument trigger setting influences all sweeps and is effective in the List mode (Instrument Trigger).

| [:SOURce <hw>]:INPut:MODext:COUPling<ch></ch></hw> | 480 |
|---|-----|
| [:SOURce <hw>]:INPut:MODext:IMPedance<ch></ch></hw> | |
| [:SOURce]:INPut:TRIGger:SI OPe | |

[:SOURce<hw>]:INPut:MODext:COUPling<ch> <Coupling>

The command selects the coupling mode for external feed via EXT 1 and/or EXT 2 input.

Parameters:

<Coupling> AC | DC

AC

The DC voltage component is disconnected from the modulation

signal.

DC

The modulation signal is not changed.

*RST: AC

Example: SOUR: INP: MOD: COUP1 AC

selects the coupling mode AC for external modulation input

EXT1.

Options: R&S SMF-B20

Manual operation: See "Coupling – External Inputs" on page 257

[:SOURce<hw>]:INPut:MODext:IMPedance<ch> < Impedance>

Sets the impedance for external feed via the EXT 1 or EXT 2 input.

Parameters:

G100k

100 kOhm to ground

G600

600 Ohm to ground

G50

50 Ohm to ground *RST: G100k

Example: INP:MOD:IMP1 G50

the EXT input is set to 50 Ohm to ground.

Options: R&S SMF-B20

Manual operation: See "Impedance – External Inputs" on page 257

[:SOURce]:INPut:TRIGger:SLOPe <Slope>

Sets the polarity of the active slope of an externally applied trigger signal at the trigger input (BNC connector at the rear of the instrument).

The setting is effective for both inputs at the same time.

Parameters:

<Slope> NEGative | POSitive

*RST: POSitive

Example: INP:TRIG:SLOP NEG

activates the falling slope of the external trigger signal at the trig-

ger input.

Manual operation: See "Ext. Trigger Input Slope" on page 170

7.13.8 SOURce:LFOutput Subsystem

The <code>SOURce:LFOutput</code> subsystem contains the commands for setting the LF signal source in CW and Sweep mode and for analog modulation.

Two internal LF generators and a noise generator are available with option R&S SMF-B20.

The suffix for LFOutput<ch> denotes the selected LF generator. The source for the LF sweep (LF generator 1 or 2) is selected with command

SOURce: LFOutput: SWEep: FREQuency: SOURce.

Example

The following example shows how to set an LF sweep.

1. Set the sweep range.

```
LFOutput:FREQuency:STARt 4 kHz
LFOutput:FREQuency:STOP 10 kHz
```

Select linear or logarithmic sweep spacing.

```
LFOutput:SWEep[:FREQuency]:SPACing LIN
```

3. Set the step width and dwell time.

```
LFOutput:SWEep[:FREQuency]:STEP[:LINear] 100 Hz
LFOutput:SWEep[:FREQuency]:DWELl 20 ms
```

4. Determine the sweep mode.

```
LFOutput:SWEep:MODE AUTO
```

5. Determine the trigger.

```
TRIGger0:SOURce SINGle
```

6. Activate the sweep.

```
LFOutput:FREQuency:MODE SWEep
```

7. Trigger the sweep (depending on the mode).

LFOutput: SWEep: EXECute

| [:SOURce]:LFOutput <ch>:BANDwidth</ch> | 483 |
|--|-----|
| [:SOURce]:LFOutput <ch>:FREQuency</ch> | 483 |
| [:SOURce <hw>]:LFOutput:FREQuency:MANual</hw> | 484 |
| [:SOURce <hw>]:LFOutput:FREQuency:MODE</hw> | 484 |
| [:SOURce <hw>]:LFOutput:FREQuency:STARt</hw> | 485 |
| [:SOURce <hw>]:LFOutput:FREQuency:STOP</hw> | 486 |
| [:SOURce]:LFOutput:MONitor:MODE | 486 |
| [:SOURce]:LFOutput:OFFSet | 486 |
| [:SOURce]:LFOutput <ch>:SOURce</ch> | 487 |
| [:SOURce]:LFOutput <ch>[:STATe]</ch> | 487 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:DWELI</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:EXECute</hw> | 487 |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:LFSource | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:ACTive | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AMPLitude | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AOFF | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:FREQuency</ch> | 489 |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:FSTate</ch> | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:VSTate</ch> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:MODE</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:POINts</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:RETRace</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:RUNNing?</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:SHAPe</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:SPACing</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:STEP[:LINear]</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic</hw> | |
| [:SOURce]:LFOutput:SWEep:VOLTage:DWELI | |
| [:SOURce]:LFOutput:SWEep:VOLTage:EXECute | |
| [:SOURce]:LFOutput:SWEep:VOLTage:LFSource | |
| [:SOURce]:LFOutput:SWEep:VOLTage:MARKer:ACTive | |
| [:SOURce]:LFOutput:SWEep:VOLTage:MARKer:AOFF | |
| [:SOURce <hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VOLTage</ch></hw> | 497 |
| [:SOURce <hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VSTate</ch></hw> | 497 |
| [:SOURce]:LFOutput:SWEep:VOLTage:MODE | |
| [:SOURce]:LFOutput:SWEep:VOLTage:POINts | |
| [:SOURce]:LFOutput:SWEep:VOLTage:RETRace | |
| [:SOURce]:LFOutput:SWEep:VOLTage:RUNNing? | 499 |
| [:SOURce]:LFOutput:SWEep:VOLTage:SHAPe | |
| [:SOURce]:LFOutput:SWEep:VOLTage:SPACing | 500 |
| [:SOURce]:LFOutput:SWEep:VOLTage:STEP[:LINear] | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe</ch></hw> | |
| [:SOURce]:LFOutput:SWEep:VOLTage:SOURce | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:DCYCle</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:WIDTh</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:FALL</ch></hw> | |
| I·SOI IRce
chw>I·I FOutput <ch>·SHAPe·TRAPeze·HIGH</ch> | |

| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod</ch></hw> | 503 |
|---|-----|
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:RISE</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRlangle:PERiod</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRlangle:RISE</ch></hw> | 504 |
| [:SOURce]:LFOutput <ch>:VOLTage</ch> | 505 |
| [:SOURce]:LFOutput:VOLTage:MANual | |
| [:SOURce]:LFOutput:VOLTage:MODE | |
| [:SOURce]:LFOutput:VOLTage:STARt | 506 |
| [:SOURce]:LFOutput:VOLTage:STOP | |

[:SOURce]:LFOutput<ch>:BANDwidth <Bandwidth>

The command selects the bandwith for the external feed via the EXT 1 and/or EXT 2 input. Selection 200 kHz und 10 MHz are available.

Parameters:

<Bandwidth> BW0M2 | BW10m

*RST: BW10m

Example: SOUR:LFO1:BAND BW0M2

selects the bandwith 200 kHz for the external feed.

Options: R&S SMF-B20

Manual operation: See "Bandwidth – External Inputs" on page 257

[:SOURce]:LFOutput<ch>:FREQuency < Frequency>

Sets the frequency of the LF signal in LFO:FREQ:MODE CW|FIXed mode.

Note:

- If signal source "Internal" is set, the instrument performs the analog modulations (AM/FM/φM/PM) with this frequency.
- In sweep mode (LFO:FREQ:MODE SWEep), the frequency is coupled with the sweep frequency.

Parameters:

<Frequency> float

Range: full frequency range

Increment: see the data sheet: Modulation sources > Resolu-

tion of frequency setting

*RST: 1000

Example: LF02:FREQ 5kHz

sets the frequency of the LF generator 2 signal to 5 kHz.

Options: R&S SMF-B20

Manual operation: See "Frequency – LF Generator" on page 260

[:SOURce<hw>]:LFOutput:FREQuency:MANual <Manual>

Determines the frequency and triggers the next sweep step manually in LFO:SWE[:FREQ]:MODE MAN, and LFO:SWE:[FREQ]:MODE STEP.

Note: You can select any frequency within the setting range. The range is defined with LFO:FREQ:STARt and LFO:FREQ:STOP.

Parameters:

<Manual> float

Range: full frequency range

Increment: see the data sheet: Modulation sources > Internal

modulation generator > Resolution of frequency

setting

*RST: 1000

Example: LFO:SWE:MODE MAN

sets the "Step" sweep mode. LFO: FREQ: MAN 5 kHz

sets an LF frequency of 5 kHz for the next step in the "Step"

sweep mode.

LFO: FREQ: MODE SWE

sets the LF Sweep mode. An LF frequency of 5 kHz is output.

LFO:FREQ:MAN 5.1 kHz

triggers the next sweep step with a frequency of 5.1 kHz.

Options: R&S SMF-B20

Manual operation: See "Current Freq" on page 284

[:SOURce<hw>]:LFOutput:FREQuency:MODE <Mode>

Sets the instrument operating mode, and determines the commands to be used for frequency settings.

The source for the LF sweep is selected with command [:SOURce]:LFOutput: SWEep[:FREQuency]:LFSource.

Parameters:

<Mode> CW | FIXed | SWEep

CW|FIXed

Sets the CW frequency mode. ${\tt CW}$ and ${\tt FIXed}$ are synonyms. The instrument operates at a fixed frequency. To set the LF out-

put frequency, use the command [:SOURce]:

LFOutput<ch>: FREQuency.

SWEep

Sets the sweep mode.

The instrument processes the frequency settings in defined sweep steps. To determine the corresponding frequency values, use the commands [:SOURce<hw>]:LFOutput:FREQuency:STARt, [:SOURce<hw>]:LFOutput:FREQuency:STOP or [:SOURce<hw>]:LFOutput:FREQuency:MANual.

*RST: CW

Example: LFO:FREQ:MODE SWE

sets the sweep mode.

Options: R&S SMF-B20

Manual operation: See "State" on page 280

[:SOURce<hw>]:LFOutput:FREQuency:STARt <Start>

Sets the start frequency for the LF sweep.

Parameters:

<Start> float

Range: full frequency range

Increment: see the data sheet: Resolution of frequency setting

*RST: 1 KHz

Example: RST*

activates all presettings.

LFO:SWE:MODE AUTO

TRIGO:SOUR SING

LFO:FREQ:STAR 1 kHz

LFO:FREQ:STOP 10 kHz

LFO:FREQ:MODE SWE

LFO:SWE:EXEC

the instrument generates a single sweep cycle from 1 kHz to 10

kHz automatically after a manual trigger event occurs

(: LFOutput: SWEep: EXECute or *TRG). The step width is 1 kHz linear, with 15 ms dell time until the signal switches to the

subsequent step.

Options: R&S SMF-B20

Manual operation: See "Start Freq" on page 284

[:SOURce<hw>]:LFOutput:FREQuency:STOP <Stop>

Sets the stop frequency for the LF sweep.

Parameters:

<Stop> float

Range: full frequency range

Increment: see the data sheet: resolution of frequency setting

*RST: 100 KHz

Example: LFO:FREQ:STOP 10 kHz

sets the stop frequency for the LF sweep to 10 kHz.

Options: R&S SMF-B20

Manual operation: See "Stop Freq" on page 284

[:SOURce]:LFOutput:MONitor:MODE < Mode>

Selects the LF output monitoring mode. The settings for the LF output are synchronized to amplitude modulation or frequency/phase modulation settings.

Parameters:

<Mode> OFF | AM | FMPM

*RST: OFF

Example: SOUR:LFO:MON:MODE AM

sets the LF output settings to be synchronized to the amplitude

modulation signal.

Options: R&S SMF-B20

Manual operation: See "Monitoring - LF Output" on page 288

[:SOURce]:LFOutput:OFFSet <Offset>

Sets a DC offset at the LF Output.

Parameters:

<Offset> float

Range: depends on Ifo voltage to depends on Ifo voltage

Increment: 0.001 *RST: 0

Example: LFO:OFFS 2 V

sets a DC OFFSet of 2 V

Options: R&S SMF-B20

Manual operation: See "DC Offset - LF Output" on page 289

[:SOURce]:LFOutput<ch>:SOURce <Source>

The command selects the internal and/or external source to be used for the LF Output signal.

Parameters:

<Source> LF1 | LF2 | NOISe | EXT1 | EXT2

*RST: LF1

Example: SOUR:LFO1:SOUR NOIS

selects the noise generator as source for the LF output signal.

Options: R&S SMF-B20

Manual operation: See "Source – LF Output" on page 289

[:SOURce]:LFOutput<ch>[:STATe] <State>

Activates the LF signal output.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: OFF

Example: SOUR: LFO1 ON

activates the LF output.

Options: R&S SMF-B20

Manual operation: See "State - LF Output" on page 289

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:DWELI <Dwell>

Sets the dwell time for each frequency step of the sweep.

Tip: It is recommended to switch off the "Display Update" for optimum sweep performance especially with short dwell times (SYSTem:DISPlay:UPDate OFF).

Parameters:

<Dwell> float

Range: see data sheet: Dwell time setting range

Increment: 100E-6 *RST: 15E-3

Example: LFO:SWE:DWEL 20 ms

sets a dwell time of 20 ms.

Options: R&S SMF-B20

Manual operation: See "Dwell Time - LF Sweep" on page 286

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:EXECute

Immediately starts an LF frequency sweep in LFO:SWE:MODE SINGle.

Example: LFO:SWE:MODE SING

sets the single cycle mode of the LF sweep.

LFO:SWE:EXEC

starts one cycle of the LF sweep.

Usage: Event

Options: R&S SMF-B20

Manual operation: See "Execute Single Sweep" on page 282

[:SOURce]:LFOutput:SWEep[:FREQuency]:LFSource <LfSource>

Selects the source for the LF sweep.

Parameters:

<LfSource> LF1 | LF2

*RST: LF1

Example: LFO:SWE:LFS LF2

selects LF generator 2 as the LF frequency sweep source.

Options: R&S SMF-B20

Manual operation: See "Generator" on page 283

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:ACTive <Active>

The command activates the selected marker. The active marker is output with a higher voltage than all other markers.

Parameters:

<Active> NONE | M01 | M02 | M03 | M04 | M05 | M06 | M07 | M08 | M09 |

M10

*RST: NONE

Example: SOUR:LFO:SWE:FREQ:MARKer:ACT M05

switches on marker 5.

Options: R&S SMF-B20

Manual operation: See "Active Marker - LF Frequency Marker" on page 288

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AMPLitude < Amplitude >

Sets the amplitude marker attenuation. This value is valid for all markers.

Correlation: The output level reduction is applied to a marker with

SOUR:LFO:SWE:MARK<[1]...10>:PST ON

Parameters:

<Amplitude> float

Range: 0 to 3 Increment: 0.1 *RST: 1

Example: SOUR:LFO:SWE:FREQ:MARK:AMPL 1

The output level is reduced by 1 dB on reaching the mark.

Options: R&S SMF-B20

Manual operation: See "Amplitude - LF Frequency Marker" on page 287

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AOFF

The command switches off all active frequency markers. The command triggers an event and therefore has no query form and no *RST value.

Example: SOUR:LFO:SWE:FREQ:MARK:AOFF

switches off all frequency markers.

Usage: Event

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:FREQuency

<Frequency>

The command sets the frequency of the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the frequency mark.

Parameters:

<Frequency> float

Range: 0.1 to 10E6

Increment: 0.1 *RST: 300 MHz

Example: SOUR:LFO:SWE:MARK1:FRQ 200Hz

sets the frequency mark for marker 1 to 200 Hz.

Options: R&S SMF-B20

Manual operation: See "Frequency - LF Frequency Marker" on page 287

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:FSTate <FState>

The command activates or deactivates the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the frequency mark.

Parameters:

<FState> 0 | 1 | OFF | ON

*RST: OFF

Example: SOUR:LFO:SWE:FREQ:MARK1:FST ON

switches on marker 1.

Options: R&S SMF-B20

Manual operation: See "State - LF Frequency Marker" on page 287

[:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer<ch>:VSTate < VState>

The command activates or deactivates the selected amplitude marker. If activated, the level is reduced by the amplitude entered with command [:SOURce]:LFOutput: SWEep[:FREQuency]:MARKer:AMPLitude on reaching the mark.

Parameters:

<VState> 0 | 1 | OFF | ON

*RST: 0

Example: SOUR:LFO:SWE:FREQ:MARK1:VST ON

the output level is reduced by a constant value if frequency

marker 1 is executed.

Options: R&S SMF-B20

Manual operation: See "Amplitude Marker - LF Frequency Marker" on page 287

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:MODE <Mode>

Sets the cycle mode of the LF sweep.

The assignment of the GPIB commands to the sweep modes is given in the description of the sweep dialogs.

Parameters:

<Mode> AUTO | MANual | STEP

AUTO

Performs a complete sweep cycle from the start to the end value when a trigger event occurs.

The dwell time determines the time period for the signal to switch to the next step.

MANual

Performs a single sweep step when a manual trigger event occurs.

The trigger system is not active. You can trigger each frequency step of the sweep individually with the command [:

SOURce<hw>]:LFOutput:FREQuency:MANual. In manual mode, use the rotary knob for switching to the next step.
With each step, the frequency increases by the value specified with the command [:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP[:LINear] or [:SOURce<hw>]:
LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic, respectively. A frequency value, entered with [:SOURce<hw>]:
LFOutput:FREQuency:MANual takes no effect.

With manual control, the frequency increases or decreases (depending on the direction of the rotary encoder) by the value specified under SOUR: LFO: SWE: FREQ: STEP: LIN (linear spacing) or ...: STEP: LOG (logarithmic spacing).

STEP

Each trigger triggers one sweep step only. The frequency increases by the value entered with [:SOURce<hw>]:

LFOutput:SWEep[:FREQuency]:STEP[:LINear] or [:

SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP:

LOGarithmic.

*RST: AUTO

Example: LFO:SWE:MODE AUTO

selects Auto mode.

Options: R&S SMF-B20

Manual operation: See "Mode" on page 281

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:POINts <Points>

Determines the number of steps for the LF frequency sweep within the sweep range.

This parameter always applies to the currently set sweep spacing and correlates with the step size as follows:

for linear sweeps and f_{STARt} < f_{STOP}
 freq_points = (f_{SPAN} / step_lin) + 1
 with f_{SPAN} = f_{STOP} - f_{STARt}
 To determine the step size, use the command SWE:STEP[:LIN].

logarithmic sweeps and f_{STARt} < f_{STOP}
 freq_points = ((log f_{STOP} - log f_{STARt}) / log step_log) + 1
 To determine the logarithmic step size, use the command SWE:STEP:LOG.

If you change the number of sweep points, the step size changes accordingly. The sweep range remains the same.

Each sweep spacing mode has assigned the POINts setting separately. Thus, the command refers always to the particular set mode, see [:SOURce<hw>]:LFOutput: SWEep[:FREQuency]:SPACing.

Note: The number of frequency sweep points displayed in the dialog deviates approximately by 1 from the frequency sweep points set with this remote control command.

It is up to the different clculation methods:

- the remote control command determines the number of steps.
- in the dialog, the instrument displays the number of transitions according to:
 Count = (f_{STOP} f_{STARt}) / step_log
 Since Count is an integer, the result may be rounded.

Parameters:

<Points> integer

Range: 2...max

Example: LFO: FREQ: STAR

sets the start frequency to 2 kHz.

LFO: FREQ: STOP

sets the stop frequency to 20 kHz

LFO: SWE: SPAC LIN sets linear sweep spacing. LFO: SWE: POIN 11

sets 11 sweep steps for linear sweep spacing. The sweep step

width (STEP) is automatically set to 2 kHz.

Options: R&S SMF-B20

Manual operation: See "Count - LF Frequency Sweep" on page 285

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:RETRace <State>

Activates that the signal changes to the start frequency value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single".

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRIGO:SWE:SOUR SING

LFO:SWE:MODE SWE
LFO:SWE:SHAP SAWT
LFO:SWE:RETR ON

activates retrace function, that menas the frequency changes to the value at start frequency while waiting for the next trigger

event.

Manual operation: See "Retrace - LF Frequency Sweep" on page 285

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:RUNNing?

Queries the current status of the LF frequency sweep mode.

Return values:

<State> 0 | 1 | OFF | ON
Example: LFO:SWE:RUNN?

Response "1": the frequency sweep is running.

Usage: Query only

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:SHAPe <Shape>

Sets the cycle mode for a sweep sequence (shape).

Parameters:

<Shape> SAWTooth | TRlangle

SAWTooth

A sweep runs from the start to the stop frequency. A subsequent sweep starts at the start frequency, that menas the shape of the

sweep sequence resembles a sawtooth.

TRlangle

A sweep runs from the start to the stop frequency and back, thatnt menas the shape of the sweep resembles a triangle. A

subsequent sweep starts at the start frequency.

*RST: SAWTooth

Example: SOUR:LFO:SWE:SHAP TRI

selects the sweep cycle with alternating ascending and

descending sweep directions.

Manual operation: See "Shape" on page 284

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:SPACing <Spacing>

Selects the mode for the calculation of the frequency sweep intervals. The frequency increases or decreases by this value at each step.

Parameters:

<Spacing> LINear | LOGarithmic | RAMP

LINear

With the linear sweep, the step width is a fixed frequency value which is added to the current frequency. The step width for linear sweep is entered in Hz (see [:SOURce<hw>]:LFOutput: SWEep[:FREQuency]:STEP[:LINear] on page 494).

LOGarithmic

With the logarithmic sweep, the step width is a constant fraction of the current frequency. This fraction is added to the current frequency. The logarithmic step width is entered in % (see [: SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic on page 495).

RAMP

With the ramp sweep, a synthesized continuous analog frequency sweep is provided for a set sweep time.

*RST: LINear

Example: LFO:SWE:SPAC LIN

selects linear sweep spacing.

Options: R&S SMF-B20

Manual operation: See "Spacing" on page 284

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP[:LINear] <Linear>

Sets the step size for linear LF frequency sweep steps.

This parameter correlates with the number of steps [:SOURce<hw>]:LFOutput: SWEep[:FREQuency]:POINts within the sweep range as follows:

 $f_{STARt} < f_{STOP}$

 $freq_points = ((f_{STARt} - f_{STOP}) / step_lin) + 1$

If you change the step size, the number of steps changes accordingly. The sweep range remains the same.

Parameters:

<Linear> float

Range: full frequency range

Increment: see the data sheet: Modulation sources > Resolu-

tion of frequency setting

*RST: 1000

Example: LFO:FREQ:STAR

sets the start frequency to 2 kHz.

LFO: FREQ: STOP

sets the stop frequency to 20 kHz.

LFO:SWE:SPAC LIN sets linear sweep spacing.
LFO:SWE:STEP 2 kHz

sets the sweep step width to 2 kHz. The number of sweep steps for linear sweep spacing (POINts) is automatically set to 11.

Options: R&S SMF-B20

Manual operation: See "Step Lin/Log - LF Sweep" on page 285

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic

<Logarithmic>

Sets the logarithmically determined sweep step size for the LF frequency sweep. It is expressed in percent and you must enter the *value* and the unit *PCT* with the command.

The frequency is increased by a logarithmically calculated fraction of the current frequency according to:

$$step_log_{step+1} = f_{step} + step_log_{step} \times f_{step}$$

$$f_{\text{step+1}} = f_{\text{step}} + \text{step_log}_{\text{step+1}}$$

with $f_{STARt} < f_{STOP}$ and step = the current number of the sweep steps

This parameter correlates with the number of steps LFO:SWE[:FREQ]:POIN within the sweep range as follows:

freq_points =
$$((log f_{STOP} - log f_{STARt}) / log step_log) + 1$$

If you change the step size, the number of steps changes accordingly. The sweep range remains the same.

Parameters:

<Logarithmic> float

Range: 0.01 to 100

Increment: 0.01 *RST: 1

Example: LFO:FREQ:STAR

sets the start frequency to 1 kHz.

LFO: FREQ: STOP

sets the stop frequency to 100 kHz.

LFO:SWE:SPAC LOG

sets logarithmic sweep spacing.
LFO:SWE:STEP:LOG 10PCT

sets the step width for logarithmic sweep spacing to 10% of the

previous frequency in each instance.

Options: R&S SMF-B20

Manual operation: See "Step Lin/Log - LF Sweep" on page 285

[:SOURce]:LFOutput:SWEep:VOLTage:DWELI < Dwell>

The command sets the time taken for each level step of the sweep.

Parameters:

<Dwell> float

Range: 1E-3 to 100
Increment: 100E-6
*RST: 15E-3
Default unit: s

Example: SOUR:LFO:SWE:VOLT:DWEL 12m

sets a dwell time of 12 ms for a level sweep.

Options: R&S SMF-B20

Manual operation: See "Dwell Time - LF Level Sweep" on page 295

[:SOURce]:LFOutput:SWEep:VOLTage:EXECute

The command triggers a sweep. The sweep to be executed depends on the set sweep mode ([:SOURce]:LFOutput:SWEep:VOLTage:MODE). The command corresponds to the manual-control command Execute Trigger.

The command triggers an event and therefore has no query form and no *RST value.

Example: SOUR:LFO:SWE:VOLT:MODE STEP

sets the STEP trigger mode, i.e. a trigger starts the sweep ini-

tially, and then the sweep is generated continously.

SOUR: LFO: SWE: VOLT: EXEC

triggers a level sweep.

Usage: Event

Options: R&S SMF-B20

Manual operation: See "Execute Single Sweep - LF Level Sweep" on page 293

[:SOURce]:LFOutput:SWEep:VOLTage:LFSource < LfSource >

The command selects the source for the LF level sweep.

Parameters:

<LfSource> LF1 | LF2

*RST: LF1

Example: SOUR: SWE: LFO: VOLT: LFS LF2

selects LF generator 2 as the LF frequency sweep source.

Options: R&S SMF-B20

Manual operation: See "Generator - LF Level Sweep" on page 294

[:SOURce]:LFOutput:SWEep:VOLTage:MARKer:ACTive <Active>

The command activates the selected marker. The active marker is output with an higher voltage than all other markers.

Parameters:

<Active> NONE | M01 | M02 | M03 | M04 | M05 | M06 | M07 | M08 | M09 |

M10

*RST: NONE

Example: SOUR:LFO:SWE:VOLT:MARK:ACT M05

sets marker 5 to be the active marker.

Options: R&S SMF-B20

Manual operation: See "Active Marker - LF Level Marker" on page 297

[:SOURce]:LFOutput:SWEep:VOLTage:MARKer:AOFF

The command switches off all markers of level sweep. The command triggers an event and therefore has no query form and no *RST value.

Example: SOUR:LFO:SWE:VOLT:MARK:AOFF

switches off all level markers.

Usage: Event

[:SOURce<hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VOLTage < Voltage>

The command sets the voltage mark for the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the voltage mark.

Parameters:

<Voltage> float

Range: 0 to 6 Increment: 1E-3 *RST: 0 dBm

Example: SOUR:LFO:SWE:VOLT:MARK1:VOLT -50

sets the voltage mark of marker 1 to -50 dBm.

Options: R&S SMF-B20

Manual operation: See "Level - LF Level Marker" on page 297

[:SOURce<hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VSTate < VState>

Activates the selected amplitude marker. If the marker is enabled, the signal level at the MARKER output changes when the level line is reached.

Parameters:

<VState> 0 | 1 | OFF | ON

*RST: 0

Example: SOUR:LFO:SWE:VOLT:MARK1:VST ON

activates marker 1.

Options: R&S SMF-B20

Manual operation: See "State - LF Level Marker" on page 297

[:SOURce]:LFOutput:SWEep:VOLTage:MODE < Mode>

The command sets the cycle mode of the LF level sweep.

Parameters:

<Mode> AUTO | MANual | STEP

AUTO

Each trigger triggers exactly one complete sweep.

MANual

The trigger system is not active. Each level step of the sweep is triggered individually, either by varying the **current level** value using the rotary knob under manual control or by means of a :VOLT:MAN command under remote control. With manual control, the level increases or decreases (depending on the direction of the rotary encoder) by the value specified under VOLT:STEP. With remote control, the level is set directly with the command VOLT:MAN.

STEP

Each trigger triggers one sweep step only. The level increases

by the value entered

under:SWEep:VOLTage:STEP:LOGarithmic.

*RST: AUTO

Example: LFO:SWE:VOLT:MODE AUTO

selects mode "Auto" for a LF level sweep.

Options: R&S SMF-B20

Manual operation: See "Mode - LF Level Sweep" on page 291

[:SOURce]:LFOutput:SWEep:VOLTage:POINts <Points>

Determines the number of LF level sweep steps within the sweep range.

The parameter always applies to the currently set sweep spacing and correlates with the step size [:SOURce]:LFOutput:SWEep:VOLTage:STEP[:LINear] as follows:

 $volt_points = (f_{STOP} - f_{STARt} / step_log) + 1$

If you change the number of sweep points, the step size changes accordingly. The sweep range remains the same.

Note: The number of level sweep points displayed in the dialog deviates approximately by 1 from the level sweep points set with this remote control command.

It is up to the different calculation methods:

• the remote control command determines the number of steps.

• in the dialog, the instrument displays the number of transitions according to:

Count = $(f_{STOP} - f_{STARt}) / step_log$

Since Count is an integer the result may be rounded.

Parameters:

<Points> integer

Example: LFO:SWE:VOLT:POINts 25

sets the number of sweep steps to 25.

Options: R&S SMF-B20

Manual operation: See "Count - LF Level Sweep" on page 295

[:SOURce]:LFOutput:SWEep:VOLTage:RETRace <State>

Activates that the signal changes to the start level value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single".

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRIGO:SWE:SOUR SING

LFO:VOLT:MODE SWE LFO:SWE:VOLT:SHAP SAWT LFO:SWE:VOLT:RETR ON

activates retrace function, i.e. the level changes to the value at

start level while waiting for the next trigger event.

Manual operation: See "Retrace - LF Level Sweep" on page 295

[:SOURce]:LFOutput:SWEep:VOLTage:RUNNing?

Queries the status of the LF level sweep.

Return values:

<State> 0 | 1 | OFF | ON

Example: LFO:SWE:VOLT:RUNN?

Response "1": the level sweep is running.

Usage: Query only

[:SOURce]:LFOutput:SWEep:VOLTage:SHAPe <Shape>

The command sets the cycle mode for a sweep sequence (shape).

Parameters:

<Shape> SAWTooth | TRlangle

SAWTooth

One sweep runs from the start level to the stop level. The subsequent sweep starts at the start level again, i.e. the shape of

sweep sequence resembles a sawtooth.

TRlangle

One sweep runs from start to stop level and back, i.e. the shape of the sweep resembles a triangle. Each subsequent sweep

starts at the start level again.

*RST: SAWTooth

Example: SOUR:LFO:SWE:VOLT:SHAP TRI

selects the sweep cycle with alternating ascending and

descending sweep directions.

Options: R&S SMF-B20

Manual operation: See "Shape - LF Level Sweep" on page 294

[:SOURce]:LFOutput:SWEep:VOLTage:SPACing <Spacing>

Sets the scale function for spacing of the LF level sweep.

Parameters:

<Spacing> LINear | LOGarithmic

*RST: LINear

Example: LFO:SWE:VOLT:SPAC LIN

Selects linear spacing of LV level sweep.

[:SOURce]:LFOutput:SWEep:VOLTage:STEP[:LINear] <Linear>

Sets the step size for linear LF level sweep steps.

This parameter correlates with the number of steps [:SOURce]:LFOutput:SWEep: VOLTage:POINts within the sweep range as follows:

 $f_{STARt} < f_{STOP}$

 $volt_{points} = ((f_{STARt} - f_{STOP}) / step_{lin}) + 1$

Parameters:

<Linear> float

Range: 1E-3 to 6 Increment: 1E-3 *RST: 0.1 V

Example: SOUR:LFO:SWE:VOLT:STEP:LIN 2 or VOLT:STEP 2

sets the step width for entering the LF level to 2 V.

Options: R&S SMF-B20

Manual operation: See "Step - LF Level Sweep" on page 295

[:SOURce<hw>]:LFOutput<ch>:SHAPe <Shape>

Selects the shape of the LF signal.

Parameters:

<Shape> SINE | SQUare | TRIangle | TRAPeze

*RST: SINE

Example: LFO:SHAP SQU

selects a rectangular shape for the signal of the LF generator.

Options: R&S SMF-B20

Manual operation: See "Shape" on page 260

[:SOURce]:LFOutput:SWEep:VOLTage:SOURce <Source>

The command sets the trigger source for the LF level sweep.

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in the Table 7-2.

Parameters:

<Source> SINGle | BUS | AUTO | IMMediate | EXTernal | EAUTo

AUTO | IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep is started.

SINGle | BUS

One complete sweep cycle is triggered by the GPIB bus commands [:SOURCe]:LFOutput:SWEep:VOLTage:EXECute, the *TRG or :TRIGger<hw>[:SWEep][:IMMediate] on page 600. The mode has to be set to "AUTO" (SOUR:LFO:SWE:VOLT:MODE AUTO).

EXTernal

The sweep is triggered externally via the TRIGGER connector or the AUX connector at the rear of the instrument.

EAUTo

The sweep is triggered externally via the INST TRIG connector. As soon as one sweep is finished, the next sweep is started. A second trigger event stops the sweep at the current frequency, a third trigger event starts the trigger at the start frequency, and so on.

*RST: AUTO

Example: LFO:SWE:VOLT:SOUR EXT

selects triggering with an external trigger. The trigger is input via the TRIGGER connector or the AUX connector at the rear of the

instrument.

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:DCYCle < DCycle>

Sets the duty cycle for the shape pulse.

Parameters:

<DCycle> float

Range: 1E-6 to 100

Increment: 1E-6 *RST: 50

Example: SOUR:LFO2:SHAP:PULS:DCYC 50PCT

sets a duty cycle of 50% for the pulse shape of the signal of LF

generator 1.

Options: R&S SMF-B20

Manual operation: See "Pulse Duty Cycle – LF Generator" on page 278

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod <Period>

Sets the period of the generated pulse. The period determines the repetition frequency of the internal signal.

Parameters:

<Period> float

Range: 1E-6 to 100

Increment: 1E-8 *RST: 1E-3

Example: SOUR:LF02:SHAP:PULS:PER 10s

sets a pulse period of 10s for the pulse shape of the signal of LF

generator 2.

Options: R&S SMF-B20

Manual operation: See "Period (Pulse, Triangle, Trapezoid Shape) – LF Generator"

on page 261

[:SOURce<hw>]:LFOutput<ch>:SHAPe:PULSe:WIDTh <Width>

Sets the width of the generated pulse. The width determines the pulse length.

Parameters:

<Width> float

Range: 1E-6 to 100

Increment: 1E-8 *RST: 5E-4

Example: SOUR:LFO2:SHAP:PULS:WIDT 10s

sets a pulse width of 10 s for the pulse shape of the signal of LF

generator 2.

Manual operation: See "Pulse Width – LF Generator" on page 278

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:FALL <Fall>

Selects the fall time for the trapeze shape of the LF generator.

Parameters:

<Fall> float

Range: see data sheet Increment: see data sheet

*RST: 10 µs

Example: SOUR:LF02:SHAP:TRAP:FALL 100ms

selects a fall time of 100 ms for the trapezoidal signal of the LF

generator 2.

Options: R&S SMF-B20

Manual operation: See "Trapezoid Fall – LF Generator" on page 279

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:HIGH <High>

Selects the high time for the trapeze shape of the LF generator.

Parameters:

<High> float

Range: see data sheet Increment: see data sheet

*RST: 10 µs

Example: SOUR:LFO2:SHAP:TRAP:HIGH 10ms

selects a high time of 10 ms for the trapezoidal signal of the LF

generator 2.

Options: R&S SMF-B20

Manual operation: See "Trapezoid High – LF Generator" on page 279

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod <Period>

Selects the period of trapezoidal signal.

Parameters:

<Period> float

Range: see data sheet Increment: see data sheet

*RST: 1 ms

Example: SOUR:LFO2:SHAP:TRAP:PER 100s

sets a period of 100 s for the trapezoidal signal of the LF gener-

ator 2.

Options: R&S SMF-B20

Manual operation: See "Period (Pulse, Triangle, Trapezoid Shape) – LF Generator"

on page 261

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRAPeze:RISE <Rise>

Selects the rise time for the trapeze shape of the LF generator.

Parameters:

<Rise> float

Range: see data sheet Increment: see data sheet

*RST: 10 µs

Example: SOUR:LFO2:SHAP:TRAP:RISE 1ms

selects a rise time of 1 ms for the trapezoidal signal of the LF

generator 2.

Options: R&S SMF-B20

Manual operation: See "Trapezoid Rise – LF Generator" on page 279

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRlangle:PERiod <Period>

Sets the period of the generated pulse. The period determines the repetition frequency of the internal signal.

Parameters:

<Period> float

Range: 1E-6 to 100 Increment: 10E-9 *RST: 0.001

Example: SOUR:LF02:SHAP:TRIA:PER 100s

sets a pulse period of 100 s for the pulse shape of the signal of

LF generator 2.

Options: R&S SMF-B20

Manual operation: See "Period (Pulse, Triangle, Trapezoid Shape) – LF Generator"

on page 261

[:SOURce<hw>]:LFOutput<ch>:SHAPe:TRlangle:RISE <Rise>

Selects the rise time for the triangle shape of the LF generator.

Parameters:

<Rise> float

Range: 1E-6 to 100 Increment: 10E-9 *RST: 0.5E-3

Example: SOUR:LF01:SHAP:TRI:RISE 13s

selects a rise time of 13 s for triangle shape of the signal of LF

generator 1.

Options: R&S SMF-B20

Manual operation: See "Triangle Rise – LF Generator" on page 278

[:SOURce]:LFOutput<ch>:VOLTage <Voltage>

Sers the output voltage of the LF output.

Parameters:

<Voltage> float

Range: 0 to dynamic

Increment: 0.001 *RST: 1

Example: SOUR:LF01:VOLT 3V

sets the voltage of the LF output to 3 V.

Options: R&S SMF-B20

Manual operation: See "Output Voltage - LF Output" on page 289

[:SOURce]:LFOutput:VOLTage:MANual < Manual >

In Sweep mode (:SOUR:LFO:VOLT:MODE SWE) the command sets the level for the next sweep step in the "Step" sweep mode (:SOUR:LFO:SWE:VOLT:MODE MAN). Here only level values between the settings [:SOUR]:LFO:VOLT:STAR and ...: STOP are permitted. Each sweep step is triggered by a separate :SOUR:LFO:VOLT: MAN command.

As with the "Level" value entered in the "LF Level" dialog, the "OFFSet" value is also taken into consideration with this command.

The specified value range is therefore only effective if : SOURce: POWer: OFFSet is set to 0. The value range for other "OFFSet" values can be calculated using the following formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Manual> float

Minimum level ... Maximum level

The value range for the level setting varies according to the instrument model. The values are given in the data sheet.

Range: 0 to 6 Increment: 0.001 *RST: 1

Example: SOUR:LFO:SWE:VOLT:MODE MAN

sets the Step sweep mode.
SOUR:LFO:VOLT:MAN -5dBm

sets an RF level of -5 dBm for the next setting in the Step sweep

mode.

SOUR:LFO:VOLT:MODE SWE sets the Level Sweep mode.
SOUR:LFO:VOLT:MAN -5.5dBm

triggers the next sweep step with a level of -5.5 dBm.

Options: R&S SMF-B20

Manual operation: See "Current Level - LF Level Sweep" on page 294

[:SOURce]:LFOutput:VOLTage:MODE < Mode>

The command sets the instrument operating mode and therefore also the commands used to set the LF output level.

Parameters:

<Mode> CW | FIXed | SWEep

CW

The instrument operates at a constant level. The output level is

set with :SOURce:LFOutput:POWer.

SWEep

The instrument operates in SWEep mode. The level is set using the commands SOURce: LFOutput: POWer: STARt; STOP;

MANual.

*RST: CW

Example: SOUR:LFO:VOLT:MODE SWE

sets the SWEep mode. The settings under

SOURce: LFOutput: POW: STARt; STOP; MANual become

effective.

Options: R&S SMF-B20

Manual operation: See "State - LF Level Sweep" on page 291

[:SOURce]:LFOutput:VOLTage:STARt <Start>

Sets the start level value for the LF sweep.

 $f_{STARt} > f_{STOP}$ is permitted.

As with the "Level" value entered in the "LF Level" dialog, the "OFFSet" value is also taken into consideration with this command.

The specified value range is therefore only effective

if :SOURce:LFOutput:Sweep:POWer:OFFSet is set to 0. The value range for other "OFFSet" values can be calculated using the following formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Start> float

Range: full level range

Increment: see the data sheet: Modulation sources

*RST: 1

Example: SOUR:LFO:VOLT:STAR 5V

sets the start level for the LF level sweep to 5 V.

Options: R&S SMF-B20

Manual operation: See "Start Level - LF Level Sweep" on page 294

[:SOURce]:LFOutput:VOLTage:STOP <Stop>

Sets the stop level value for the LF sweep.

As with the "Level" value entered in the "LF Level" menu, the "OFFSet" value is also taken into consideration with this command.

The specified value range is therefore only effective

if : SOURce: LFOutput: SWEep: POWer: OFFSet is set to 0. The value range for other "OFFSet" values can be calculated using the following formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Stop> float

Range: full level range

Increment: see the data sheet: Modulation sources

*RST: 1 V

Example: SOUR: LFO: VOLT: STOP 6V

sets the stop level for the LF level sweep to 6 V.

Options: R&S SMF-B20

Manual operation: See "Stop Level - LF Level Sweep" on page 294

7.13.9 SOURce:LIST Subsystem

This subsystem contains the commands for the List mode of the instrument.

The following settings are required to operate the instrument in List mode:

1. Create a list.

If a list which does not exist is selected with the :LIST: SEL command, an empty list with the name of the selected list is created.

```
SOURce1:LIST:SEL "New list"
```

2. Fill the list with values.

All list components must be of the same length. This does not apply to components of length 1. This is interpreted as if the component has the same length as the other components and as if all values are the same as the first value.

```
SOURce1:LIST:FREQ 100 MHz, 110 MHz, 120 MHz... SOURce1:LIST:POW 2dBm, -1dBm, 0dBm...
```

3. Select a list.

If a new empty file has been created with the :LIST:SEL command, this file is selected, otherwise an existing list must be selected before the List mode is activated.

```
SOURce1:LIST:SEL "Old list"
```

4. Set the dwell time.

The dwell time determines the duration of the individual list steps.

```
SOURce1:LIST:DWEL1 3ms
```

5. Set the List mode.

The List mode determines the way in which the list is processed. In the example the list is processed once only or repeatedly depending on the trigger setting. SOURcel:LIST:MODE AUTO

6. Determine the trigger.

In the example each trigger causes the list to be processed once from beginning to end.

```
SOURce:LIST:TRIGger:SOURce SINGle
```

7. Activate the List mode.

```
SOURce1:FREQuency:MODE LIST
```

8. Trigger the list (depending on the mode).

```
SOURcel:LIST:TRIGger:EXECute
```

Deactivate the List mode.

```
SOURce1:FREQuency:MODE CW
```


SCPI refers to the individual lists as segments.

| [:SOURce <hw>]:LIST:CATalog?</hw> | 509 |
|--|-----|
| [:SOURce <hw>]:LIST:DELete</hw> | |
| [:SOURce <hw>]:LIST:DELete:ALL</hw> | |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:CATalog?</hw> | 510 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:EXTension</hw> | |

| [:SOURce <hw>]:LIST:DEXChange:AFILe:SELect</hw> | 511 |
|--|-----|
| [:SOURce <hw>]:LIST:DEXChange:AFILe:SEParator:COLumn</hw> | 512 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:SEParator:DECimal</hw> | 512 |
| [:SOURce <hw>]:LIST:DEXChange:EXECute</hw> | |
| [:SOURce <hw>]:LIST:DEXChange:MODE</hw> | 513 |
| [:SOURce <hw>]:LIST:DEXChange:SELect</hw> | 513 |
| [:SOURce <hw>]:LIST:DWELI</hw> | 514 |
| [:SOURce <hw>]:LIST:FREE?</hw> | 514 |
| [:SOURce <hw>]:LIST:FREQuency</hw> | 514 |
| [:SOURce <hw>]:LIST:FREQuency:POINts?</hw> | 515 |
| [:SOURce <hw>]:LIST:INDex</hw> | 515 |
| [:SOURce <hw>]:LIST:INDex:STARt</hw> | 516 |
| [:SOURce <hw>]:LIST:INDex:STOP</hw> | 516 |
| [:SOURce <hw>]:LIST:LEARn</hw> | 517 |
| [:SOURce <hw>]:LIST:MODE</hw> | 517 |
| [:SOURce <hw>]:LIST:POWer</hw> | 517 |
| [:SOURce <hw>]:LIST:POWer:POINts?</hw> | 518 |
| [:SOURce <hw>]:LIST:RESet</hw> | 518 |
| [:SOURce <hw>]:LIST:SELect</hw> | |
| [:SOURce <hw>]:LIST:TRIGger:EXECute</hw> | 519 |
| [:SOURce <hw>]:LIST:TRIGger:SOURce</hw> | |
| | |

[:SOURce<hw>]:LIST:CATalog?

Requests a list of available lists. The individual lists are separated by commas.

The lists are stored with the fixed file extensions *.lsw in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/Listmode'

selects the directory for the list mode files.

LIST: CAT?

queries the available lists.
Response: 'list1, list2'

the lists list1 and list2 are available.

Usage: Query only

[:SOURce<hw>]:LIST:DELete <Filename>

Deletes the specified list.

The files are stored with the fixed file extensions *.lsw in a directory of the user's choice. The directory applicable to the command is defined with the command MMEMory:CDIR. To access the files in this directory, only the file name has to be given, without the path and the file extension. A path can also be specified in command:SOUR:LIST:CAT?, in which case the file in the specified directory is deleted.

*RST does not affect data lists.

Setting parameters:

<Filename> string

Example: MMEM:CDIR '/var/Listmode'

selects the directory for the list mode files.

LIST: DEL 'LIST1' deletes the list list1.

Usage: Setting only

Manual operation: See "List Mode Data... - List Mode" on page 176

[:SOURce<hw>]:LIST:DELete:ALL

Deletes all lists in the selected directory.

Note: The list mode must be previously disabled to make sure that no records are selected when you set the frequency mode ([:SOURce<hw>]:FREQuency:MODE).

The files are stored with the fixed file extensions *.lsw in a directory of the user's choice. You can select the directory with the commands :MMEMory:CDIRectory or [:SOURce<hw>]:LIST:CATalog?.

*RST does not affect data lists.

Example: MMEM:CDIR '/var/Listmode'

selects the directory for the list mode files.

FREQ: MODE SWE

deactivates the list mode for RF output and activates the sweep

mode.

LIST: DEL: ALL

deletes all list mode files in the selected directory.

Usage: Event

Manual operation: See "List Mode Data... - List Mode" on page 176

[:SOURce<hw>]:LIST:DEXChange:AFILe:CATalog?

Queries the available ASCII files for export or import of list mode data in the current or specified directory.

As response, you get a string containing the existing ASCII files *.txt or *.csv, separated by commas.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/import'

selects the directory for the ASCII files with frequency and level

value pairs.

LIST:DEXC:AFIL:EXT TXT

determines the extension *.txt for the query.

LIST:DEXC:AFIL:CAT?

queries the available files with extension *.txt.

Response: 'list1, list2'

the ASCII files list1.txt and list2.txt are available.

Usage: Query only

[:SOURce<hw>]:LIST:DEXChange:AFILe:EXTension < Extension>

Determines the extension of the ASCII file for import or export, or to query existing files.

Parameters:

<Extension> TXT | CSV

*RST: TXT

Example: MMEM:CDIR '/var/import'

selects the directory for the ASCII files with frequency and level

value pairs.

LIST:DEXC:AFIL:EXT TXT

selects ASCII files with the extension *.txt for the query.

LIST:DEXC:AFIL:CAT?

queries the available files with extension *.txt.

Response: 'list1, list2'

the ASCII files list1.txt and list2.txt exist.

Manual operation: See "Extension - List Mode" on page 179

[:SOURce<hw>]:LIST:DEXChange:AFILe:SELect <Filename>

Selects the ASCII file to be imported or exported.

Parameters:

<Filename> <ascii_file_name>

Example: LIST: DEXC: MODE IMP

determines that ASCII files with frequency and level value pairs

are imported into list mode lists. LIST: DEXC: AFIL: EXT TXT

determines the extension *.txt for the query.

LIST:DEXC:AFIL:CAT?

queries the available files with extension *.txt.

Response: 'list1, list2'

the ASCII files list1.txt and list2.txt exist.
LIST:DEXC:AFIL:SEL '/var/list.csv'

selects list.csv for import.

LIST: DEXC: SEL '/var/list_imp' determines the destination file list imp.

LIST: DEXC: EXEC

imports the ASCII file data into the list file.

Manual operation: See "Select ASCII Source / Destination - List Mode"

on page 179

[:SOURce<hw>]:LIST:DEXChange:AFILe:SEParator:COLumn <Column>

Selects the separator between the frequency and level column of the ASCII table.

Parameters:

<Column> TABulator | SEMicolon | COMMa | SPACe

*RST: COMMa

Example: LIST: DEXC: MODE EXP

selects that the list is exported into an ASCII file. LIST:DEXC:AFIL:SEL '/var/list.csv'

determines ASCII file list.csv as destination for the list mode list

data.

LIST:DEXC:AFIL:SEP:COL TAB

defines a tabulator to separate the frequency and level values

pairs.

LIST: DEXC: AFIL: SEP: DEC DOT selects the decimal separator dot.
LIST: DEXC: SEL '/var/list imp'

determines the source file list_imp for export into the ASCII file

list.csv.
LIST:DEXC:EXEC

exports the list file data into the ASCII file.

Manual operation: See "Column Separator- List Mode" on page 179

[:SOURce<hw>]:LIST:DEXChange:AFILe:SEParator:DECimal < Decimal>

Sets the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Parameters:

<Decimal> DOT | COMMa

*RST: DOT

Example: see [:SOURce<hw>]:LIST:DEXChange:AFILe:

SEParator: COLumn on page 512

Manual operation: See "Decimal Point - List Mode" on page 179

[:SOURce<hw>]:LIST:DEXChange:EXECute

Executes the import or export of the selected list file, according to the previously set transfer direction with command [:SOURce<hw>]:LIST:DEXChange:MODE.

Example: LIST: DEXC: MODE IMP

determines that ASCII files with frequency and level value pairs

are imported into list mode lists.

LIST: DEXC: AFIL: SEL '/var/list.csv'
selects the ASCII file list.csv for import.
LIST: DEXC: SEL '/var/list_imp'
determines the destination file list_imp.

LIST: DEXC: EXEC

imports the ASCII file data into the list mode file.

Usage: Event

Manual operation: See "Import / Export - List Mode" on page 180

[:SOURce<hw>]:LIST:DEXChange:MODE <Mode>

Selects if list mode lists should be imported or exported. Depending on the selection here, the file select command defines either the source or the destination for list mode lists and ASCII files.

Parameters:

<Mode> IMPort | EXPort

*RST: IMPort

Example: LIST: DEXC: MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into list mode lists.
LIST:DEXC:AFIL:SEL '/var/list.csv'
selects that ASCII file list.csv is imported.
LIST:DEXC:SEL '/var/list imp'

selects that the ASCII file list.csv is imported into list mode

list list imp.

Manual operation: See "Mode - List Mode" on page 179

[:SOURce<hw>]:LIST:DEXChange:SELect <Filename>

Selects the list mode list to be imported or exported.

The list mode files are stored with the fixed file extensions *.lsw in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR. A path can also be specified in command SOUR:LIST:DEXC:SEL, in which case the files are stored or loaded in the specified directory.

Parameters:

<Filename> < list name>

Example: LIST:DEXC:MODE IMP

selects that ASCII files with frequency and level value pairs are

imported and transferred into list mode lists.
LIST:DEXC:AFIL:SEL '/var/list.csv'
selects that ASCII file list.csv is imported.
LIST:DEXC:SEL '/var/list imp'

selects that the ASCII file list.csv is imported into list mode

list list_imp.

Manual operation: See "Select Destination / Source - List Mode" on page 180

[:SOURce<hw>]:LIST:DWELI <Dwell>

Sets the dwell time. The R&S SMF generates the signal with the frequency / power value pairs of each list entry for that particular period.

Parameters:

<Dwell> float

Range: 7E-4 to 100

Increment: 1E-4 *RST: 15E-3

Example: LIST: DWEL 15

each setting in the list is retained for 15 ms.

Manual operation: See "Dwell Time - List Mode" on page 175

[:SOURce<hw>]:LIST:FREE?

Queries on the free storage space for list mode lists.

Return values:

<Free> integer

Range: 0 to INT_MAX

*RST: C

Example: LIST: FREE?

Usage: Query only

Response: 2147483647;1

[:SOURce<hw>]:LIST:FREQuency <Frequency>

Fills the FREQuency column of the selected list with data.

*RST does not affect data lists.

Parameters:

<Frequency> <Frequency#1>{, <Frequency#2>, ...} | block data

The data can be given either as a list of numbers (list can be of any length and list entries must be separated by commas) or as binary block data. When block data is transferred, 8 bytes are always interpreted as a floating-point number with double accu-

racy (see : FORMat [:DATA] on page 368).

Range: 300 kHz to RFmax

Example: LIST:SEL '/var/list3'

selects list3 for editing. The R&S SMF generates a new file

automatically, if it does not exist yet.

SOUR:LIST:FREQ 1.4GHz, 1.3GHz, 1.2GHz,...

specifies the frequency values in list3. If the list already contains

data, it is overwritten.

Manual operation: See "Edit List Mode Data... - List Mode" on page 176

[:SOURce<hw>]:LIST:FREQuency:POINts?

The command queries the length (in points) of the FREQuency component of the selected list.

Return values:

<Points> integer

Range: 0 to INT_MAX

*RST: 0

Example: LIST:SEL '/var/list3'

selects list3 for editing. The R&S SMF creates a new file

automatically, if it does not exist yet.

LIST: FREQ: POIN?

queries the number of frequency values in the list

Response: 327

Usage: Query only

[:SOURce<hw>]:LIST:INDex <Index>

Sets the list index in step mode (LIST: MODE STEP).

After the trigger signal the frequency and level settings of the selected index are processed in List mode.

Parameters:

<Index> integer

*RST: 0

Example: LIST:SEL '/var/list3'

selects list3 for use in List mode.

FREQ:MODE LIST

activates List mode. List3 is processed.

LIST:MODE STEP

selects manual, step-by-step processing of the list.

LIST: IND 5

the frequency/level value pair with index 5 is executed.

TRIG:LIST:SOUR SING

selects triggering by means of the single trigger. The list is exe-

cuted once.

SOUR:LIST:TRIG:EXEC

triggers the processing of the selected list.

Manual operation: See "Current Index - List Mode" on page 175

[:SOURce<hw>]:LIST:INDex:STARt <Start>

Sets the start index of the index range which defines a subgroup of frequency/level value pairs in the current list. Only the values in the set index range

(:LIST:INDex:STARt ... :LIST:INDex:STOP) are processed in List mode.

Parameters:

<Start> integer

Range: 0 to list length

*RST: 0

Example: LIST:SEL '/var/list3'

selects list3 for use in List mode.

LIST: IND: STAR 25

sets 25 as start index of the index range.

LIST: IND: STOP 49

sets 49 as stop index of the index range.

FREQ:MODE LIST

activates List mode. The frequency/level value pairs from index 25 to index 49 in list3 are processed. All other entries of the list

are ignored.

Manual operation: See "List Range In - List Mode" on page 177

[:SOURce<hw>]:LIST:INDex:STOP <Stop>

Sets the stop index of the index range which defines a subgroup of frequency/level value pairs in the current list. Only the values in the set index range

(:LIST:INDex:STARt ...:LIST:INDex:STOP) are processed in list mode.

Parameters:

<Stop> integer

Range: 0 to list length

*RST: 0

Example: see [:SOURce<hw>]:LIST:INDex:STARt on page 516

Manual operation: See "List Range In - List Mode" on page 177

[:SOURce<hw>]:LIST:LEARn

Learns the selected list to determine the hardware setting for all list entries. The results are saved with the list. When the list is activated the first time, these settings are calculated automatically.

Example: LIST:SEL '/var/list3'

selects list file. The file is created if it does not yet exist.

LIST: LEAR

starts learning of the hardware setting for list3 and stores the

setting.

Usage: Event

Manual operation: See "Learn List Mode Data... - List Mode" on page 175

[:SOURce<hw>]:LIST:MODE <Mode>

Selects how the list is to be processed (similar to SOURce: SWEep: MODE).

Parameters:

<Mode> AUTO | STEP

AUTO

Each trigger event triggers a complete list cycle. Possible trigger settings for :LIST:TRIGGER: SOURCE are AUTO, SINGLE and

EXT.

STEP

Each trigger event triggers only one step in the list processing

cycle. The list is processed in ascending order.

*RST: AUTO

Example: LIST:MODE STEP

selects step-by-step processing of the list.

Manual operation: See "Mode - List Mode" on page 174

[:SOURce<hw>]:LIST:POWer <Power>

Fills the Level part of the selected list with data.

*RST does not affect data lists.

Parameters:

<Power* <Power#1>{, <Power#2>, ...} | block data

The data can be given either as a list of numbers (list can be of any length and list entries must be separated by commas) or as binary block data. When block data is transferred, 8 bytes are always interpreted as a floating-point number with double accu-

racy (see : FORMat[:DATA] on page 368).

Range: Minimum level to Maximum level

Default unit: dBm

Example: LIST:SEL '/var/list3'

selects list3 for editing. The R&S SMF generates a new file

automatically, if it does not exist yet.

LIST: POW OdBm, 2dBm, 2dBm, 3dBm,..

specifies the level values in list3. The number of level values must correspond to the number of frequency values. The previ-

ous data is overwritten.

Manual operation: See "Edit List Mode Data... - List Mode" on page 176

[:SOURce<hw>]:LIST:POWer:POINts?

Queries the length (in points) of the LEVel part of the selected list.

Return values:

<Points> integer

Range: 0 to INT_MAX

*RST: 0

Example: LIST:SEL '/var/list3'

selects list3 for editing. The R&S SMF generates a new file

automatically, if it does not exist yet.

LIST: POW: POIN?

queries the number of levels in the list file

Response: 327

Usage: Query only

[:SOURce<hw>]:LIST:RESet

Resets the list to the starting point.

Example: LIST:RES

resets the list to the starting point.

Usage: Event

Manual operation: See "Reset - List Mode" on page 175

[:SOURce<hw>]:LIST:SELect <Filename>

Selects the specified list. If a new list is to be created, the name can be entered here. The list is created if it does not yet exist. The list selected here is available for the further processing steps (editing) and is used in the instrument when the list mode is activated.

The files are stored with the fixed file extensions *.lsw in a directory of the user's choice. The directory applicable to the command is defined with the command MMEMory: CDIR. A path can also be specified in which case the list mode file in the specified directory is selected.

*RST does not affect data lists.

Parameters:

<Filename> '<list name>'

Example: LIST:SEL '/var/list3'

selects list3 for editing.

Manual operation: See "List Mode Data... - List Mode" on page 176

[:SOURce<hw>]:LIST:TRIGger:EXECute

Starts the processing of a list in list mode. It corresponds to the manual-control command "Execute Single."

Example: SOUR:LIST:TRIG:EXEC

triggers the processing of the selected list.

Usage: Event

Manual operation: See "Execute Single - List Mode" on page 174

[:SOURce<hw>]:LIST:TRIGger:SOURce <Source>

Selects the trigger source processing lists.

The names of the parameters correspond to those under sweep mode. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration. An overview of the various names is given in the following table:

| R&S name | SCPI name | Command under manual control |
|----------|-----------|---------------------------------------|
| AUTO | IMMediate | MODE AUTO |
| SINGle | BUS | MODE SINGLE or STEP |
| EXTernal | EXTernal | MODE EXT TRIG SINGLE OF EXT TRIG STEP |

Parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal

AUTO|IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. The selected list in List mode is restarted as soon

as it is finished.

SINGle|BUS

The list is triggered by the GPIB commands [:SOURce<hw>]:

LIST: TRIGger: EXECute. The list is executed once.

EXTernal

The list is triggered externally via the INST TRIG connector. The

list is executed once.

*RST: AUTO

Example: LIST:TRIG:SOUR EXT

selects triggering by means of the external trigger.

Manual operation: See "Mode - List Mode" on page 174

7.13.10 SOURce: MODulation Subsystem

This subsystem contains the command for switching on/off all modulations.

[:SOURce<hw>]:MODulation[:ALL][:STATe] <State>

Activates/deactivates the modulations.

The command SOUR: MOD: ALL: STAT OFF switches all modulations off. A subsequent command SOUR: MOD: ALL: STAT ON restores the status that was active before the last switch-off. "MOD OFF" is displayed in the info line of the header next to the "Level" field.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 1

Example: MOD:STAT OFF

switches off all modulations.

Manual operation: See "MOD ON/OFF" on page 256

7.13.11 SOURce: NOISe Subsystem

The SOURce: NOISe subsystem contains the commands for setting the noise modulation signal. The noise generator is optional.

| [:SOURce <hw>]:NOISe:BANDwidth BWIDth</hw> | 521 |
|---|-----|
| [:SOURce <hw>]:NOISe:BWIDth:STATe</hw> | |
| [:SOURce <hw>]:NOISe:DISTribution</hw> | 521 |
| [:SOURce <hw>]:NOISe:LEVel:RELative?</hw> | 522 |
| [:SOURce <hw>]:NOISe:LEVel[:ABSolute]?</hw> | 522 |

[:SOURce<hw>]:NOISe:BANDwidth|BWIDth <BWidth>

Sets the noise level in the system bandwidth for enabled bandwidth limitation. Distinct bandwidth settings between 10 kHz and 10 MHz in 100 kHz steps (range 100 .. 1 MHz), 1 MHz (range 1 MHz .. 5 MHz) and 5 MHz (5 MHz ... 10 MHz) are possible.

Parameters:

<BWidth> float

Range: 100E3 to 10E6

Increment: 100E3 *RST: 100E3

Example: NOIS:BWID:STAT ON

enables bandwidth limitation.

NOIS:BWID 1 MHz

sets a system bandwidth of 1 MHz.

Options: R&S SMF-B20

Manual operation: See "Bandwidth - Noise" on page 279

[:SOURce<hw>]:NOISe:BWIDth:STATe <State>

Enables /disables bandwidth limitation of noise.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: NOIS:BWID:STAT ON

enables bandwidth limitation.

Options: R&S SMF-B20

[:SOURce<hw>]:NOISe:DISTribution < Distribution>

Selects the noise power density distribution of the noise.

Parameters:

<Distribution> GAUSs | EQUal

*RST: GAUSs

Example: NOIS:DIST GAUS

selects Gaussian distribution.

Options: R&S SMF-B20

Manual operation: See "Distribution - Noise" on page 279

[:SOURce<hw>]:NOISe:LEVeI:RELative?

This command queries the level of the noise signal per Hz in the total bandwidth.

Return values:

<Relative> float

Range: -149.18 to -52.67

Increment: 0.1 *RST: -69.84

Example: NOIS:LEV:REL?

queries the noise level

Usage: Query only
Options: R&S SMF-B20

Manual operation: See "Noise Density - Noise" on page 279

[:SOURce<hw>]:NOISe:LEVel[:ABSolute]?

Queries the level of the noise signal in the system bandwidth for enabled bandwidth limitation.

Return values:

<Absolute> float

*RST: 3.84 MHz

Example: NOIS:BWID:STAT ON

enables bandwidth limitation.

NOIS:BWID 10 MHz

sets a system bandwidth of 1 MHz.

NOIS:LEV:ABS

queries the noise level in the system bandwidth

Usage: Query only
Options: R&S SMF-B20

Manual operation: See "Noise Level - Noise" on page 280

7.13.12 SOURce:PGEN Subsystem

This subsystem contains the commands for setting the pulse generator.

| [:SOURce <hw>]:PGENerator:OUTPut:POLarity</hw> | 522 |
|--|-----|
| [:SOURce <hw>]:PGENerator:OUTPut[:STATe]</hw> | 523 |

[:SOURce<hw>]:PGENerator:OUTPut:POLarity <Polarity>

The command sets the polarity of the pulse output signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

Outputs the pulse signal during the pulse width, that means in

high state.

INVerted

Inverts the pulse output signal polarity. The pulse output signal is suppressed during the pulse width, but provided during the

low state.

*RST: NORMal

Example: PGEN:OUTP:POL INV

inverts the polarity.

Options: R&S SMF-K23

Manual operation: See "Output Polarity – Pulse Generator" on page 299

[:SOURce<hw>]:PGENerator:OUTPut[:STATe] <State>

Activates/deactivates the pulse generator output.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: PGEN:OUTP ON

activates pulse generator output.

Options: R&S SMF-K23

Manual operation: See "Pulse Output State – Pulse Generator" on page 299

7.13.13 SOURce:PHASe Subsystem

This subsystem contains the commands for adjusting the phase of the RF output signal relative to a reference signal of the same frequency.

| [:SOURce <hw>]:PHASe</hw> | 523 |
|-------------------------------------|-----|
| [:SOURce <hw>]:PHASe:REFerence</hw> | 524 |

[:SOURce<hw>]:PHASe <Phase>

Sets the phase variation relative to the current phase. The variation is specified in RADians.

Parameters:

<Phase> float

Range: -720 to 720

Increment: 0.1 *RST: 0

Example: PHAS 0.1 RAD

changes the phase by 0.1 RAD relative to the current phase.

PHAS: REF

adopts the set phase as the current phase.

Manual operation: See "Delta Phase" on page 157

[:SOURce<hw>]:PHASe:REFerence

Adopts the phase set with SOURce: PHASe: ADJust as the current phase.

Example: PHAS 0.1RAD

changes the phase by 0.1 RAD relative to the current phase.

PHAS: REF

adopts the set phase as the current phase.

Usage: Event

Manual operation: See "Reset Delta Phase Display" on page 157

7.13.14 SOURce:PM Subsystem

The PM subsystem contains the commands for checking the phase modulation. The settings for the internal modulation source (LF generator) are made in the SOURce:LFOutput subsystem.

The external signal is input at the EXT1, 2 connectors.

For information on the required options, see Chapter 5.5.4, "Phase Modulation (PhiM)", on page 264.

| [:SOURce]:PM <ch>[:DEViation]</ch> | 524 |
|--|-----|
| [:SOURce <hw>]:PM:MODE</hw> | 525 |
| [:SOURce <hw>]:PM:RATio</hw> | |
| [:SOURce <hw>]:PM<ch>:SOURce</ch></hw> | 526 |
| [:SOURce <hw>]:PM<ch>:STATe</ch></hw> | 526 |

[:SOURce]:PM<ch>[:DEViation] < Deviation>

Sets the deviation of the phase modulation signal in RAD or degrees. The maximum deviation depends on the set RF frequency and the selected modulation mode (see data sheet).

Suffix:

<ch> 1..2

determines the modulation signal channel.

Parameters:

<Deviation> float

Range: see data sheet

Example: PM1:DEV 20RAD

sets 20 RAD deiation for the phase modulation signal in channel

1 (PM1).

Options: R&S SMF-B20

Manual operation: See "

M Deviation" on page 266

[:SOURce<hw>]:PM:MODE <Mode>

Selects the mode for the phase modulation.

Parameters:

<Mode> HDEViation | HBANdwidth | LNOise

HDEViation

Provides full setting range of PhiM deviation. The range of modulation frequency is limited (see data sheet). Recommended for

low modulation frequencies and/or high PhiM deviation.

HBANdwidth

Provides maximum range of modulation bandwidth. Recommen-

ded for high modulation frequencies.

LNOise

Provides modulation with phase noise and spurious characteristics close to CW mode. The range for modulation bandwidth and

PhiM deviation is limited (see data sheet)

*RST: HBANdwidth

Example: PM:MODE LNO

selects Low Noise mode for external phase modulation.

Options: R&S SMF-B20

[:SOURce<hw>]:PM:RATio <Ratio>

Sets the PM ratio (PM2 to PM1) in percent.

Parameters:

<Ratio> float

Range: 0 to 100 Increment: 0.01 *RST: 100

Example: PM:RAT 50PCT

sets 50 percent PM2/PM1 ratio.

Options: R&S SMF-B20

Manual operation: See "Ratio PM 2/1" on page 265

[:SOURce<hw>]:PM<ch>:SOURce<Source>

Selects the modulation signal source for phase modulation.

Suffix:

PM<ch> 1..2

determines the modulation signal channel.

Parameters:

<Source> LF1 | LF2 | NOISe | EXT1 | EXT2 | INTernal | EXTernal

*RST: LF1 <PM1>; LF2 <PM2>

Example: PM1:SOUR LF2

selects the LF generator 2 as internal modulation source in sig-

nal channel 1.

Options: R&S SMF-B20

Manual operation: See "Source" on page 265

[:SOURce<hw>]:PM<ch>:STATe <State>

Activates phase modulation.

Note: Activation of PM deactivates frequency modulation (FM).

Suffix:

FM<ch> 1..2

determines the modulation signal channel.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: PM1:STAT ON

activates PM modulation for path 1.

Options: R&S SMF-B20

Manual operation: See "State" on page 265

7.13.15 SOURce:POWer Subsystem

This subsystem contains the commands for setting the output level, level control and level correction of the RF signal.

Other units can also be used instead of dBm:

- by entering the unit directly after the numerical value (example : POW 0.5V)
- by changing the DEFault unit in the UNIT system (see the command : UNIT: POWer).

| PMETer:TYPE527 | [:SOURce <hw>]:POWer:ALC:PMETer:</hw> |
|----------------|---------------------------------------|
| REFerence527 | [:SOURce <hw>]:POWer:ALC:REFeren</hw> |
| SONCe | [:SOURce <hw>]:POWer:ALC:SONCe</hw> |

| [:SOURce <hw>]:POWer:ALC:SOURce</hw> | 528 |
|---|-----|
| [:SOURce <hw>]:POWer:ALC[:STATe]</hw> | 528 |
| [:SOURce <hw>]:POWer:ATTenuation:RFOFf:MODE</hw> | 529 |
| [:SOURce]:POWer:ATTenuation | 529 |
| [:SOURce <hw>]:POWer:EMF:STATe</hw> | 529 |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate][:AMPLitude]</hw> | 530 |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate]:OFFSet</hw> | 530 |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate]:RCL</hw> | 531 |
| [:SOURce <hw>]:POWer:LIMit[:AMPLitude]</hw> | 531 |
| [:SOURce <hw>]:POWer:MANual</hw> | 532 |
| [:SOURce <hw>]:POWer:MODE</hw> | 533 |
| [:SOURce <hw>]:POWer:POWer</hw> | 533 |
| [:SOURce <hw>]:POWer:RESolution</hw> | 533 |
| [:SOURce <hw>]:POWer:SPC:CRANge</hw> | 534 |
| [:SOURce <hw>]:POWer:SPC:DELay</hw> | 534 |
| [:SOURce <hw>]:POWer:SPC:PEAK</hw> | 534 |
| [:SOURce <hw>]:POWer:SPC:SELect</hw> | 535 |
| [:SOURce <hw>]:POWer:SPC:STATe</hw> | 535 |
| [:SOURce <hw>]:POWer:SPC:TARGet</hw> | 535 |
| [:SOURce <hw>]:POWer:STARt</hw> | 536 |
| [:SOURce <hw>]:POWer:STEP[:INCRement]</hw> | 536 |
| [:SOURce <hw>]:POWer:STEP:MODE</hw> | 537 |
| [:SOURce <hw>]:POWer:STOP</hw> | 537 |

[:SOURce<hw>]:POWer:ALC:PMETer:TYPE <Type>

The command selects the power meter used for external level control.

Parameters:

<Type> NRP | NRVD | HP436 | HP437 | HP438 | ML2438 | P44X

*RST: NRP

Example: POW:ALC:PMET:TYPE HP438

the specified power meter is used for external level control.

Manual operation: See "Power Meter Type - External Level Control" on page 197

[:SOURce<hw>]:POWer:ALC:REFerence <Reference>

The command sets the reference voltage for external power control. See specification of the used instrument for external power control for details.

Parameters:

<Reference> float

Range: 0 to 2.5 Increment: 1E-4 *RST: 1.5

Example: SOUR: POW: ALC: REF 0.37

sets a refebrence voltage of 0.37 volt.

Manual operation: See "Reference Voltage - External Level Control" on page 197

[:SOURce<hw>]:POWer:ALC:SONCe

Temporarily activates level control for correction purposes.

Example: POW:ALC OFF

deactivates automatic level control for RF output A.

POW:ALC:SONC

level control is performed once only.

Usage: Event

Manual operation: See "Search Once - ALC" on page 196

[:SOURce<hw>]:POWer:ALC:SOURce <Source>

The command selects the detector for level control.

Parameters:

<Source> INTernal | DIODe | PMETer

INTernal

The internal detector is switched on.

DIODe

A diode detector can be connected to the EXT ALC input.

PMETer

A power meter can be connected to the EXT ALC input.

*RST: INTernal

Example: POW:ALC:SOUR INT

sets the internal detector for level control.

Manual operation: See "Source - External Level Control" on page 196

[:SOURce<hw>]:POWer:ALC[:STATe] <State>

Activates automatic level control.

Parameters:

<State> 0 | OFF | 1 | ON

ON

Internal level control is permanently activated. This provides the

highest level accuracy.

OFF

Internal level control is deactivated, Sample & Hold mode is

activated.

*RST: 1

Example: POW:ALC ON

activates internal level control.

Manual operation: See "State - ALC" on page 195

[:SOURce<hw>]:POWer:ATTenuation:RFOFf:MODE <Mode>

The command selects the mode of the mechanical attenuator, when the RF signal is switched off.

The setting of the RF OFF mode is not affected by an instrument preset (PRESET key), *RST and the "Save/Recall" function. This parameter is influenced only by the Factory Preset.

Parameters:

<Mode> NORMal | ATTenuated

NORMal

The current attenuation remains when the RF signal is switched

off and thus provides fast and wear-free operation.

ATTenuated

The attenuation is set to maximum when the RF signal is switched off. This setting is recommended for applications that

require a high level of noise suppression.

*RST: NORMal

Example: SOUR: POW: ATT: RFOF: MODE ATT

sets the RF OFF attenuator to maximum.

Options: R&S SMF-B26 or R&S SMF-B27

Manual operation: See "RF OFF Mode - Attenuation Settings" on page 178

[:SOURce]:POWer:ATTenuation < Attenuation >

Sets the attenuation.

Parameters:

<Attenuation> integer

Range: 0 to 110 Increment: 10

*RST: 0

Example: SOUR: POW: ATT 20dB

sets the power attenuation to 20 dB.

Manual operation: See "Attenuation – Attenuation Settings" on page 178

[:SOURce<hw>]:POWer:EMF:STATe <State>

Displays the signal level as voltage of the EMF. The displayed value represents the voltage over a 50 Ohm load.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: POW:EMF:STAT 1

activates voltage level display.

Manual operation: See "Display Level as Voltage of EMF - RF Level" on page 186

[:SOURce<hw>]:POWer[:LEVel][:IMMediate][:AMPLitude] <Amplitude>

Sets the RF level applied to the DUT.

Notes:

If specified, a level offset [:SOURce<hw>]:POWer[:LEVel][:IMMediate]:
 OFFSet is included according to the formula:

```
Minimum level + OFFSet ... Maximum level + OFFSet
```

In addition to numerical values, you can increase or decrease the values step by step with the UP and DOWN according to the step width defined with [:SOURce<hw>]:
POWer:STEP[:INCRement].

The RF output is activated with :OUTPut<hw>[:STATe] on page 389 (RF ON / RF OFF).

Parameters:

<Amplitude> Minimum level ... Maximum level

Determines the RF output level.

Range: Minimum level to Maximum level

*RST: -30

Example: The keywords of this command are largely optional. Therefore,

both the long and short form of the command are shown.

SOUR: POW: LEV: IMM: AMPL 15

or
:POW 15

sets the RF level at output A to 15 dBm.

Manual operation: See "RF Level" on page 182

[:SOURce<hw>]:POWer[:LEVel][:IMMediate]:OFFSet <Offset>

Note: The level offset is also effective for level sweeps!

Specifies the constant level offset of a downstream attenuator/amplifier. If a level offset is entered, the level entered with : POWer no longer corresponds to the RF output level.

The following correlation applies:

```
POWer = RF output level + POWer:OFFSet.
```

Entering a level offset does not change the RF output level, but rather the query value of : POWer.

For more information, see Chapter 5.4.1.1, "RF level vs. RF output level", on page 182.

Only dB is permitted as the unit here. The linear units (V, W, etc.) are not permitted.

The keywords of this command are largely optional. Therefore, both the long and short form of the command are shown in the example.

Parameters:

<Offset> float

Range: -100 to 100

Increment: 0.01 *RST: 0

Example: SOURce:POWer:LEVel:IMMediate:OFFSet -10

or

POW:OFFS 10

sets the RF level offset to 10 dB

Manual operation: See "Offset (Level)" on page 184

[:SOURce<hw>]:POWer[:LEVel][:IMMediate]:RCL <Rcl>

Determines whether the RF level is retained or taken from a loaded instrument configuration, when you recall instrument settings with the command *RCL.

Parameters:

<Rcl> INCLude | EXCLude

INCLude

Takes the level value of the loaded settings.

EXCLude

Retains the current level when an instrument configuration is

loaded.

*RST: INCLude

Example: POW:RCL INCL

takes the level value from an instrument configuration loaded

with command *RCL.

Manual operation: See "Exclude Level" on page 144

[:SOURce<hw>]:POWer:LIMit[:AMPLitude] <Amplitude>

Limits the maximum RF output level in CW and SWEEP mode. It does not influence the "Level" display or the response to the POW? query command.

The value is not affected by an instrument preset (PRESET key), *RST and the Save/Recall function. This parameter is influenced only by the factory preset (SYST:FPR) and its factory value is equal to the upper limit.

Parameters:

<Amplitude> float

Minimum level ... Maximum level

The value range for the level setting varies according to the

instrument model.

The values are given in the data sheet.

Increment: 0.01 *RST: 30

Example: SOURce:POWer:LIMit:AMPLitude 10

or

:POW:LIM 10

limits the RF level to maximum +10 dBm.

Manual operation: See "Limit - RF Level" on page 184

[:SOURce<hw>]:POWer:MANual <Manual>

In Sweep mode (:SOUR:POW:MODE SWE) the command sets the level for the next sweep step in the Step sweep mode (:SOUR:SWE:POW:MODE MAN). Here only level values between the settings [:SOUR]:POW:STAR and [:SOUR]:POW:STOP are permitted. Each sweep step is triggered by a separate :SOUR:POW:MAN command.

As with the "Level" value entered in the "RF Level" menu, the OFFSet value is also taken into consideration with this command.

The specified value range is therefore only effective if :SOURCE:POWET:OFFSet is set to 0. The value range for other OFFset values can be calculated using the following formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Manual> float

Minimum level ... Maximum level

The value range for the level setting varies according to the

instrument model

The values are given in the data sheet.

Increment: 0.01 *RST: -30

Example: POW:SWE:MODE MAN

sets the Step sweep mode for RF output A.

POW:MAN -5 dBm

sets an RF level of -5 dBm for the next setting in the Step sweep

mode for RF output A.

POW:MODE SWE

sets the Level Sweep mode for RF output A.

POW:MAN -5.5 dBm

triggers the next sweep step with a level of -5.5 dBm.

Manual operation: See "Current Level - Level Sweep" on page 190

[:SOURce<hw>]:POWer:MODE <Mode>

Sets the instrument operating mode and therefore also the commands used to set the output level.

Parameters:

<Mode> CW | FIXed | SWEep

CW|FIXed

Operates at a constant level.

CW and FIXed are synonyms. To set the output level value, use

the command [:SOURce<hw>]:POWer[:LEVel][:

IMMediate][:AMPLitude].

SWEep

Operates in power sweep mode.

Set the range and current level with the commands [: SOURce<hw>]:POWer:STARt, [:SOURce<hw>]:POWer:

STOP and [:SOURce<hw>]:POWer:MANual.

*RST: CW

Example: POW:MODE SWEep

selects the SWEep mode using the

POW:STAR; POW:STOP; POW:MAN settings.

Manual operation: See "State - Level Sweep" on page 187

[:SOURce<hw>]:POWer:POWer <Power>

Sets the RF level of the RF output connector.

The level entered with this command corresponds to the level at the RF output, i.e. any offset entry is not taken into consideration.

Note: The SCPI command [:SOURce<hw>]:POWer[:LEVel][:IMMediate][: AMPLitude] sets the level of the "Level" display, i.e. the level containing offset.

Parameters:

<Power> Minimum level ... Maximum level

The value range for the level setting varies according to the

instrument model.

The values are given in the data sheet.

Increment: 0.01 *RST: -30

Example: SOUR: POW: POW 15

sets the RF level at output to 15 dBm.

Manual operation: See "Amplitude" on page 183

[:SOURce<hw>]:POWer:RESolution <Resolution>

The command selects the resolution for the level settings.

Parameters:

<Resolution> R01 | R1

*RST: R01

Example: POW:RES R01

sets the resolution for the level settings to 0.01 dB.

Manual operation: See "Power Resolution" on page 184

[:SOURce<hw>]:POWer:SPC:CRANge <PowCntrlCRange>

Defines the capture range of the power control system.

Within the range:

Target Level +/- Catch Range

the power control locks and tries to achieve the target level. Readings outside the range are not considered.

Parameters:

<PowCntrlCRange> float

Range: 0 to 50 Increment: 0.01 *RST: 30 Default unit: dB

Example: POW:SPC:CRAN 15

sets the capture range to +/- 15 dB.

Manual operation: See "Catch Range +/-" on page 208

[:SOURce<hw>]:POWer:SPC:DELay <PowCntrlDelay>

Defines a waiting period between the level adjustment of the generator and the next measurement of the power sensor.

Parameters:

<PowCntrlDelay> integer

Range: 0 to 1000

Increment: 1 *RST: 0

Example: : POW:SPC:DEL 2 ms

the sensor starts the next reading 2 ms after the level adjust-

ment.

Manual operation: See "Delay Time" on page 208

[:SOURce<hw>]:POWer:SPC:PEAK <PowCntrlPeak>

Activates power control by means of the peak power values, provided the power sensor supports this function.

Parameters:

<PowCntrlPeak> 0 | 1 | OFF | ON

*RST: 0

Example: POW:SPC:PEAK ON

uses the measured peak power for power control.

Manual operation: See "Use Peak Power" on page 208

[:SOURce<hw>]:POWer:SPC:SELect < PowCntrlSelect>

Defines the currently selected sensor to be used for power control.

Parameters:

<PowCntrlSelect> SENS1 | SENS2 | SENS3 | SENS4

*RST: SENS1

Example: POW:SPC:SEL SENS2

selects the sensor connected to a second USB interface for

power control.

Manual operation: See "Sensor" on page 207

[:SOURce<hw>]:POWer:SPC:STATe <PowCntrlState>

Activates power control using the selected sensor. The control loop periodically adjusts the generator output. After switching off, the running loop is completed.

Parameters:

<PowCntrlState> 0 | 1 | OFF | ON

*RST: 0

Example: POW:SPC:STAT ON

activates power control.

Manual operation: See "State" on page 207

[:SOURce<hw>]:POWer:SPC:TARGet < PowCntrlTarget>

Sets the nominal level expected at the input of the sensor. To define the unit of the power value, use command : SENSe<ch>: UNIT[::POWer] on page 439.

Parameters:

<PowCntrlTarget> float

Range: -50 to 30 Increment: 0.01 *RST: -10

Example: SENS:UNIT dBm

selects unit dBm for setting the target level value.

POW: SPC: TARG -10 sets -10 dBm target level.

Manual operation: See "Target Level" on page 208

[:SOURce<hw>]:POWer:STARt <Start>

Sets the start level for the RF sweep.

Note: You can select any level within the setting range. The range is defined by this start value and the [:SOURce<hw>]:POWer:STOP value.

A defined offset ([:SOURce<hw>]:POWer[:LEVel][:IMMediate]:OFFSet) affects the level values according to the formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Start> float

Determines the first level value of the sweep setting range.

Range: full specified level range

Increment: see the data sheet: Level sweep > Step size setting

resolution

*RST: -30

Example: POW:STAR -20 dBm

sets the start level for the level sweep to -15 dBm for RF output

Α.

Manual operation: See "Start Level - Level Sweep" on page 190

[:SOURce<hw>]:POWer:STEP[:INCRement] < Increment>

Sets the step width for POW:STEP:MODE USER.

To adjust the level step by step with this step size, use the POW: UP and POW: UP commands.

Note: This value also applies to the step width of the rotary knob of the instrument and increases or decreases the level accordingly, when you work in user-defined step mode.

Parameters:

<Increment> float

Range: full specified level range

Increment: see the data sheet: Level sweep > Step size setting

resolution

*RST: 1

Example: POW:STEP 2

sets the step width for entering the RF level to 2 dB.

Manual operation: See "Variation Step" on page 185

[:SOURce<hw>]:POWer:STEP:MODE < Mode>

Activates (USER) or deactivates (DECimal) the user-defined step width used when varying the level value with the level values UP/DOWN. The command is linked to setting "Variation Active" for manual control, i.e. the command also activates/deactivates the user-defined step width used when varying the level value with the rotary knob.

Parameters:

<Mode> DECimal | USER

*RST: DECimal

Example: POW:STEP 2

sets the step width for the level setting to 2 dB.

POW:STEP:MODE USER

actives this step width for level variation with the rotary knob (manual control) and with level values UP/DOWN (remote con-

trol).

Manual operation: See "Variation Active" on page 185

[:SOURce<hw>]:POWer:STOP <Stop>

Sets the stop level for the RF sweep.

Note: You can select any level within the setting range. The range is defined by the [:SOURce<hw>]:POWer:STARt value and this stop value.

A defined offset ([:SOURce<hw>]:POWer[:LEVel][:IMMediate]:OFFSet) affects the level values according to the formula:

Minimum level + OFFSet ... Maximum level + OFFSet

Parameters:

<Stop> float

Determines the last level value of the sweep setting range.

Range: full specified level range

Increment: see the data sheet: Level sweep > Step size setting

resolution

*RST: -10

Example: POW:STOP 3

sets the stop level for the level sweep to 3 dBm for RF output A.

Manual operation: See "Stop Level - Level Sweep" on page 190

7.13.16 SOURce:PULM Subsystem

This subsystem contains the commands for setting the pulse modulation.

The LF generator is used as the internal modulation source. The pulse frequency of the internal rectangular signal is therefore set in the <code>SOURce:LFOutput</code> subsystem.

The external signal is input at the PULSE IN connector. The connector can be used as trigger input for internal pulse modulation. The polarity and input impedance of the connector can be selected. The pulse modulation signal is output at the PULSE OUT connector.

Programming Examples

Example: Performing pulse modulation

This example shows a command sequence to perform pulse modulation.

```
// ********************
\ensuremath{//} Reset the instrument to start from an initial state
*RST; *CLS
// *********************
// Set the RF signal frequency and level
// ******************
SOURce: FREQuency: CW 400000000
SOURce: POWer: LEVel: IMMediate: AMPLitude -25
// ****************
\ensuremath{//} Configure the pulse modulation settings
// *********************
// Select the internal modulation generator
SOURce: PULM: SOURce INT
// Set trigger mode
SOURce: PULM: TRIGger: MODE AUTO
// Select pulse mode
SOURce: PULM: MODE DOUB
// **********************
// Alternatively configure the pulse modulation settings for
// external modulation source
// **********************
// Select the external modulation source
SOURce: PULM: SOURce EXT
// Set the polarity of the externally applied modulation signal.
SOURce: PULM: POLarity NORMal
// Select the impedance for the external pulse modulation trigger input
SOURce: PULM: TRIGger: EXTernal: IMPedance G10K
// ******************
// Configure the pulse generator settings
// *****************
// Set pulse period
SOURce: PULM: PERiod 10 us
// Set pulse width
SOURce: PULM: WIDth 8 us
```

Example: Generating a pulse train signal

This example shows a command sequence to create a pulse train signal.

Prior to the selection of the pulse train mode make sure that you have generated and selected a pulse train data list. Otherwise, the instrument generates an error.

```
// *********************
// Reset the instrument to start from an initial state
*RST; *CLS
// ***********************
// Set the RF signal frequency and level
// **********************
SOURce:FREQuency:CW 400000000
SOURce: POWer: LEVel: IMMediate: AMPLitude -25
// **********************
// Create a pulse train data list
// **********************
// Select the directory
MMEM:CDIR '/var/user/Lists/'
// Create and/or select the pulse train data file
SOURCe: PULM: TRAin: SEL 'P FIVE'
// Enter the pulse train data
SOURCe: PULM: TRAin: ONTime 10ns, 30ns, 40ns, 20ns, 10ns
SOURCe: PULM: TRAin: OFFTime 30ns, 40ns, 50ns, 40ns, 30ns
SOURCe: PULM: TRAin: REPetition 10,1,3,10,6
// *******************
// Select pulse train mode
// *******************
// Select the internal modulation generator and the pulse mode
SOURce: PULM: SOURce INTernal
SOURce: PULM: MODE PTRain
```

| // *************** | |
|--|-------|
| // Activate the signal output | |
| // *************** | |
| SOURce:PGENerator:OUTPut:STATe 1 | |
| SOURce:PULM:STATe 1 | |
| OUTPut1:STATe 1 | |
| LOOUR - A LIBURAREL | E 4.0 |
| [:SOURce <hw>]:PULM:DELay</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:DELay</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:STATe</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:WIDTh</hw> | |
| [:SOURce <hw>]:PULM:MODE</hw> | |
| [:SOURce <hw>]:PULM:OUTPut:VIDeo:POLarity</hw> | |
| [:SOURce <hw>]:PULM:PERiod</hw> | |
| [:SOURce <hw>]:PULM:POLarity</hw> | |
| [:SOURce <hw>]:PULM:SOURce</hw> | |
| [:SOURce <hw>]:PULM:STATe</hw> | |
| [:SOURce <hw>]:PULM:SYNC</hw> | |
| [:SOURce <hw>]:PULM:TRAin:CATalog?</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DELete</hw> | |
| [:SOURce <hw>]:PULM:TRAin:OFFTime</hw> | |
| [:SOURce <hw>]:PULM:TRAin:OFFTime:POINts?</hw> | |
| [:SOURce <hw>]:PULM:TRAin:ONTime</hw> | |
| [:SOURce <hw>]:PULM:TRAin:ONTime:POINts?</hw> | |
| [:SOURce <hw>]:PULM:TRAin:REPetition</hw> | |
| [:SOURce <hw>]:PULM:TRAin:REPetition:POINts?</hw> | |
| [:SOURce <hw>]:PULM:TRAin:SELect</hw> | |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:GATE:POLarity</hw> | |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:IMPedance</hw> | |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:LEVel</hw> | |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:SLOPe</hw> | |
| [:SOURce <hw>]:PULM:TRIGger:MODE</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:CATalog?</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:EXTension</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SELect</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:COLumn</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:DECimal</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:EXECute</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:MODE</hw> | |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:SELect</hw> | |
| [:SOURce <hw>]:PULM:WIDTh</hw> | 555 |

[:SOURce<hw>]:PULM:DELay <Delay>

Sets the pulse delay.

Parameters:

<Delay> float

Range: 10 ns to 100 s

Increment: 5 ns *RST: 10 ns

Example: PULM: DEL 13 us

13 us elapse after a trigger before the first pulse is generated.

Options: R&S R&S SMF-K23 (Pulse Generator)

Manual operation: See "Pulse Delay - Pulse Generator" on page 298

[:SOURce<hw>]:PULM:DOUBle:DELay <Delay>

Sets the delay from the start of the first pulse to the start of the second pulse.

Parameters:

<Delay> float

Range: 10 ns to 100 s

Increment: 5 ns *RST: 3 us

Example: PULM:DOUB:DEL 22 us

22 us elapse between the beginning of the first pulse and the

beginning of the second pulse in double-pulse mode.

Options: R&S SMF-K23 (Pulse Generator)

Manual operation: See "Double Pulse Delay - Pulse Generator" on page 299

[:SOURce<hw>]:PULM:DOUBle:STATe <State>

Enables/disables double pulse generation. The two pulses are generated in one pulse period.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: PULM: DOUB: STAT ON

double-pulse mode is enabled.

Options: R&S SMF-K23 (Pulse Generator)

[:SOURce<hw>]:PULM:DOUBle:WIDTh <Width>

Sets the width of the second pulse in case of double pulse generation.

Parameters:

<Width> float

Range: 5 ns to 100 s

Increment: 5 ns *RST: 3 us

Example: PULM: DOUB: WIDT 33 us

sets a width of 33 us for the second pulse.

Options: R&S SMF-K23 (Pulse Generator)

Manual operation: See "Double Pulse Width - Pulse Generator" on page 298

[:SOURce<hw>]:PULM:MODE <Mode>

Sets the mode of the pulse generator.

Parameters:

<Mode> SINGle | DOUBle | PTRain

SINGle

Enables single pulse generation.

DOUBle

Enables double pulse generation. The two pulses are generated

in one pulse period.

PTRain

A user-defined pulse train is generated The pulse train is defined by value pairs of on and off times that can be entered in a pulse

train list.

*RST: SINGle

Example: PULM: MODE DOUB

enables double pulse generation.

Options: R&S SMF-K23 (Pulse Generator), R&S SMF-K27 (Pulse Train)

Manual operation: See "Pulse Mode - Pulse Generator" on page 298

[:SOURce<hw>]:PULM:OUTPut:VIDeo:POLarity <Polarity>

Sets the polarity between modulating and modulated signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

The RF signal is suppressed during the pulse pause.

INVerted

The RF signal is suppressed during the pulse.

*RST: NORMal

Example: PULM: SOUR EXT

selects the external modulation source.

PULM:OUTP:VID:POL INV selects inverted polarity.

Manual operation: See "Video Polarity - Pulse Modulation" on page 271

[:SOURce<hw>]:PULM:PERiod <Period>

Sets the period of the generated pulse. The period determines the repetition frequency of the internal signal.

Parameters:

<Period> float

The min value depends on the installed option R&S SMF-K22 or

R&S SMF-K23 respectively.

Range: 5 us | 20 ns to 100 s

Increment: 1us | 5 ns *RST: 10 us

Example: PULM: PER 220 us

the pulse period is 220 us.

Options: R&S SMF-K23 (Pulse Generator)

Manual operation: See "Pulse Period - Pulse Generator" on page 298

[:SOURce<hw>]:PULM:POLarity <Polarity>

Sets the polarity between modulating and modulated signal. This command is effective only for an external modulation signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

The RF signal is suppressed during the pulse pause.

INVerted

The RF signal is suppressed during the pulse.

*RST: NORMal

Example: PULM: SOUR EXT

selects the external modulation source.

Example: PULM: POL INV

selects inverted polarity.

Options: R&S SMF-K3 (Narrow Pulse Modulation)

Manual operation: See "Polarity" on page 271

[:SOURce<hw>]:PULM:SOURce <Source>

Selects the source for pulse modulation.

Parameters:

<Source> INTernal | EXTernal | CODer | RANDom | INTernal | EXTernal |

RANDom **EXTernal**

The signal applied externally via the PULSE IN connector is

used for the pulse modulation.

INTernal

The internal pulse generator is used for the pulse modulation.

Note: This feature requires option R&S SMF-K23.

RANDom

Selects random pulses generated by the noise generator as the

source for pulse modulation.

*RST: INTernal

Example: PULM: SOUR EXT

selects the external modulation source.

PULM:STAT ON

activates the pulse modulation.

Options: R&S SMF-K3 (Narrow Pulse Modulation)

Manual operation: See "Source" on page 271

[:SOURce<hw>]:PULM:STATe <State>

Activates the pulse modulation.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: C

Example: PULM: STAT ON

activates pulse modulation.

Options: R&S SMF-K23 (Pulse Generator)

Manual operation: See "State" on page 270

[:SOURce<hw>]:PULM:SYNC <Sync>

When enabled, the external modulation signal is synchronized to the internal 200MHz reference before it is passed to the pulse modulator. Since most instrument capabilities are timed by the same reference, the edges of the modulation signal can be synchronized e.g. to RF or to pulse modulator outputs if instrument is set up accordingly.

When disabled, the signal is passed asynchronously to the modulator.

Parameters:

<Sync> OFF | ON

*RST: 1

Example: PULM:SYNC OFF

the signal is passed asynchronously to the modulator.

Manual operation: See "Synchronize to internal clock - Pulse Modulation"

on page 271

[:SOURce<hw>]:PULM:TRAin:CATalog?

Queries a list of available pulse train files. The individual pulse train files are separated by commas.

The files are stored with the fixed file extensions *.pulstrn in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM: TRA: CAT?

queries the available files.

Response: 'P_CONS', 'P_INCR', 'P_DECR' the lists P_CONS, P_INCR and P_DECR are available.

Usage: Query only

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Pulse Train Data – Pulse Generator" on page 302

[:SOURce<hw>]:PULM:TRAin:DELete <Filename>

Deletes the specified pulse train file.

The files are stored with the fixed file extensions *.pulstrn in a directory of the user's choice. The directory applicable to the command is defined with the command MMEMory:CDIR. To access the files in this directory, only the file name has to be given without the path and the file extension.

Setting parameters:

<Filename> < list file name>

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:DEL 'P_FIVE'
deletes the list P FIVE

Usage: Setting only

Manual operation: See "Pulse Train Data – Pulse Generator" on page 302

[:SOURce<hw>]:PULM:TRAin:OFFTime <OffTime>

Fills the Off-time part of the selected file with data.

*RST does not affect data lists.

Parameters:

<OffTime> Offtime#1{, Offtime#2, ...} | binary block data

The data can be given either as a list of numbers (list can be of any length and list entries must be separated by commas) or as

binary block data.

When block data is transferred, 8 (4) bytes are always interpreted as a floating-point number with double accuracy (see the

command FORMat: DATA).

The maximum length is 2047 values.

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM:TRA:OFFT 10ns, 30ns, 40ns,...

specifies the off-time values in P INCR. If the list already con-

tains data, it is overwritten.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Edit Pulse Train Data" on page 303

[:SOURce<hw>]:PULM:TRAin:OFFTime:POINts?

Queries the length (in points) of the off-time component of the selected list.

Return values:

<Points> integer

Range: 0 to 2047

*RST: 0

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P_INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM:TRA:OFFT:POIN?

queries the number of frequency values in P_INCR

Response: 7

P_INCR has 7 off-time entries.

Usage: Query only

[:SOURce<hw>]:PULM:TRAin:ONTime <OnTime>

Fills the On-time part of the selected file with data.

Parameters:

<OnTime> Ontime#1{, Ontime#2, ...} | binary block data

The data can be given either as a list of numbers (list can be of any length and list entries must be separated by commas) or as

binary block data.

When block data is transferred, 8 (4) bytes are always interpreted as a floating-point number with double accuracy (see the

command FORMat: DATA).

The maximum length is 2047 values.

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM: TRA: ONT 10ns, 30ns, 40ns, ...

specifies the on-time values in P INCR. If the list already con-

tains data, it is overwritten.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Edit Pulse Train Data" on page 303

[:SOURce<hw>]:PULM:TRAin:ONTime:POINts?

Queries the length (in points) of the ontime component of the selected list.

Return values:

<Points> integer

Range: 0 to 2047

*RST: 0

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM:TRA:ONT:POIN?

queries the number of frequency values in P INCR

Response: 7

P INCR has 7 ontime entries.

Usage: Query only

[:SOURce<hw>]:PULM:TRAin:REPetition < Repetition>

Sets the number of repetitions for each ontime/offtime value pair.

*RST does not affect data lists.

Tip:"0" ignores the corresponding value pair in the pulse train. Thus, you can individually omit value pairs without deleting them from the table.

Parameters:

<Repetition> Repetition#1{, Repetition#2, ...}

Range: 0...65535

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P_INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM: TRA: ONT 10ns, 30ns, 40ns, ...

specifies the ontime values in P INCR. If the list already con-

tains data, it is overwritten.

PULM:TRA:OFFT 10ns, 30ns, 40ns, ...

specifies the offtime values in P INCR. If the list already con-

tains data, it is overwritten.
PULM: TRA: REP 1, 8, 3, ...

specifies the number of repetitions for each value pair.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Edit Pulse Train Data" on page 303

[:SOURce<hw>]:PULM:TRAin:REPetition:POINts?

Queries the length (in points) of the repetition component of the selected list.

Return values:

<Points> integer

Range: 0 to INT_MAX

*RST: 0

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

PULM:TRA:REP:POIN?

queries the number of repetition values in P INCR

Response: 7

P INCR has 7 repetition entries.

Usage: Query only

[:SOURce<hw>]:PULM:TRAin:SELect <Filename>

Selects the specified pulse train file. If a new file is to be created, the name can be entered here. The file is created if it does not yet exist. The file selected here is available for the further processing steps (editing) and is used in the instrument when the pulse train mode is activated.

The files are stored with the fixed file extensions *.pulstrn in a directory of the user's choice. The directory applicable to the command is defined with the command MMEMory:CDIR.

*RST does not affect data lists.

Parameters:

<Filename> string

Example: MMEM:CDIR '/var/user/Lists'

selects the directory for the pulse train files.

PULM:TRA:SEL 'P INCR'

selects P INCR for editing. P INCR is created if it does not yet

exist.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Pulse Train Data – Pulse Generator" on page 302

[:SOURce<hw>]:PULM:TRIGger:EXTernal:GATE:POLarity < Polarity>

Selects the polarity of the Gate signal.

The signal is supplied via the PULSE IN connector.

Parameters:

<Polarity> NORMal | INVerted

*RST: NORMal

Example: PULM:TRIG:EXT:GATE:POL NORM

The pulse signal is generated while the gate signal is high.

Manual operation: See "Gate Input Polarity - Pulse Generator" on page 301

[:SOURce<hw>]:PULM:TRIGger:EXTernal:IMPedance < Impedance>

Selects the impedance for external pulse trigger.

Parameters:

<Impedance> G50 | G10K

*RST: G50

Example: SOUR: PULM: TRIG: EXT: IMP G50

selects 50 Ohm as the trigger impedance for the external pulse

trigger.

Manual operation: See "External Impedance" on page 301

[:SOURce<hw>]:PULM:TRIGger:EXTernal:LEVel <Level>

Selects the external trigger level (threshold TTL, 0.5 V or -2.5 V).

Parameters:

<Level> TTL | M2V5 | P0V5

*RST: TTL

Example: PULM:TRIG:EXT:LEV TTL

selects TTL as external trigger level.

Manual operation: See "Trigger Level – Input/Trigger Settings" on page 300

[:SOURce<hw>]:PULM:TRIGger:EXTernal:SLOPe <Slope>

Sets the polarity of the active slope of an externally applied trigger signal at the TRIGGER input (BNC connector at the rear of the instrument).

Parameters:

<Slope> NEGative | POSitive

*RST: POSitive

Example: PULM:TRIG:EXT:SLOP NEG

The pulse generator is triggered on the negative slope of the

external trigger signal.

Manual operation: See "External Trigger Input Slope - Pulse Generator"

on page 301

[:SOURce<hw>]:PULM:TRIGger:MODE <Mode>

Selects the trigger mode for pulse modulation.

Parameters:

<Mode> AUTO | EXTernal | EGATe | SINGle

AUTO

The pulse modulation is generated continuously.

EXTernal

The pulse modulation is triggered by an external trigger event. The trigger signal is supplied via the PULSE IN connector.

EGATe

The pulse modulation is triggered by an external trigger event. The trigger signal is supplied via the PULSE IN connector.

SINGle

Pulse modulation is generated once.

*RST: AUTO

Example: PULM:TRIG:MODE EXT

selects triggering by an external trigger event.

Manual operation: See "Trigger Mode - Pulse Generator" on page 299

[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:CATalog?

The command requests a list of available ASCII files for export/import of pulse train data. The individual files are separated by commas.

The ASCII files are stored with the fixed file extensions *.txt or *.csv in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Return values:

<Catalog> string

Example: MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM:TRA:DEXC:AFIL:EXT TXT

selects that ASCII files with extension *.txt are listed.

PULM:TRA:DEXC:AFIL:CAT?

queries the available files with extension *.txt.

Response: 'train1','train2'

the ASCII files train1.txt and train2.txt are available.

Usage: Query only

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Select ASCII Source / Destination - Import/Export Pulse

Train Files" on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:EXTension < Extension>

The command selects the file extension of the ASCII file to be imported or exported. Selection TXT (text file) or CSV (Excel file) is available.

Parameters:

<Extension> TXT | CSV

*RST: TXT

Example: MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM:TRA:DEXC:AFIL:EXT TXT

selects that ASCII files with extension \star . txt are listed.

PULM:TRA:DEXC:AFIL:CAT?

queries the available files with extension \star .txt.

Response: 'train1','train2

the ASCII files train1.txt and train2.txt are available.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Extension – ASCII File Settings" on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SELect <Filename>

The command selects the ASCII file to be imported or exported.

The ASCII files are stored with the fixed file extensions *.txt or *.csv in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Parameters:

<Filename> string

Example: MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM:TRA:DEXC:MODE IMP

selects that ASCII files with ontime/offtime/repetition values are

imported and transferred into pulse train lists. PULM:TRA:DEXC:AFIL:SEL 'train.csv' selects that ASCII file train.csv is imported.

PULM:TRA:DEXC:SEL 'train imp'

selects that the ASCII file train.csv is imported into pulse

train list train imp.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Select ASCII Source / Destination - Import/Export Pulse

Train Files" on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:COLumn < Column>

Parameters:

<Column> TABulator | SEMicolon | COMMa | SPACe

*RST: SEMicolon

Example: PULM:TRA:DEXC:MODE EXP

selects that the pulse train list is exported into an ASCII file.

MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM:TRA:DEXC:AFIL:SEL 'train.csv'

selects ASCII file train.csv as destination for the pulse train list

data.

PULM:TRA:DEXC:AFIL:SEP:COL TAB

the ontime/offtime/repetition values are separated by a tabulator.

PULM:TRA:DEXC:AFIL:SEP:DEC DOT

selects the decimal separator dot.
PULM:TRA:DEXC:SEL 'train_imp'

selects that the pulse train list train_imp is imported into

ASCII file train.csv.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Column Separator- ASCII File Settings" on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:DECimal < Decimal >

Select the decimal separator used in the ASCII data between '.' (decimal point) and ',' (comma) with floating-point numerals.

Parameters:

<Decimal> DOT | COMMa

*RST: DOT

Example: PULM:TRA:DEXC:MODE EXP

selects that the pulse train list is exported into an ASCII file.

MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with on-time/off-time/

repetition values.

PULM:TRA:DEXC:AFIL:SEL 'train.csv'

selects ASCII file train.csv as destination for the pulse train list

data.

PULM:TRA:DEXC:AFIL:SEP:COL TAB

the ontime/offtime/repetition values are separated by a tabulator.

PULM:TRA:DEXC:AFIL:SEP:DEC DOT

selects the decimal separator dot.
PULM:TRA:DEXC:SEL 'train_imp'

selects that the pulse train list train imp is imported into

ASCII file train.csv.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Decimal Point - ASCII File Settings" on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:EXECute

Starts the export or import of the selected file. When import is selected, the ASCII file is imported as pulse train list. When export is selected, the pulse train list is exported into the selected ASCII file.

Example: PULM:TRA:DEXC:MODE IMP

selects that ASCII files with ontime/offtime/repetition values are

imported and transferred into pulse train lists.
MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with on-time/off-time/

repetition values.

PULM:TRA:DEXC:AFIL:SEL 'train.csv'
selects that ASCII file train.csv is imported.
PULM:TRA:DEXC:SEL 'train imp'

selects that the ASCII file ${\tt train.csv}$ is imported into pulse

train list train_imp.
PULM:TRA:DEXC:EXEC

starts the import of the ASCII file data into the pulse train file.

Usage: Event

Manual operation: See "Import / Export - Import/Export Pulse Train Files"

on page 305

[:SOURce<hw>]:PULM:TRAin:DEXChange:MODE < Mode>

Selects if pulse train lists should be imported or exported. Depending on the selection, the file select command define either the source or the destination for pulse train lists and ASCII files.

Parameters:

<Mode> IMPort | EXPort

*RST: IMPort

Example: PULM:TRA:DEXC:MODE IMP

selects that ASCII files with ontime/offtime/repetition values are

imported and transferred into pulse train lists.
MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM: TRA: DEXC: AFIL: SEL 'train.csv' selects that ASCII file train.csv is imported.

PULM:TRA:DEXC:SEL 'train_imp'

selects that the ASCII file train.csv is imported into pulse

train list train_imp.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Mode – Import/Export Pulse Train Files" on page 304

[:SOURce<hw>]:PULM:TRAin:DEXChange:SELect <Filename>

The command selects the pulse train list to be imported or exported.

The pulse train files are stored with the fixed file extensions *.pulstrn in a directory of the user's choice. The directory applicable to the commands is defined with the command MMEMory:CDIR.

Parameters:

<Filename> string

Example: PULM:TRA:DEXC:MODE IMP

selects that ASCII files with ontime/offtime/repetition values are

imported and transferred into pulse train lists.
MMEM:CDIR '/var/user/Lists/import'

selects the directory for the ASCII files with ontime/offtime/repe-

tition values.

PULM:TRA:DEXC:AFIL:SEL 'train.csv' selects that ASCII file train.csv is imported.
PULM:TRA:DEXC:SEL 'train imp'

selects that the ASCII file ${\tt train.csv}$ is imported into pulse

train list train_imp.

Options: R&S SMF-K27 (Pulse Train)

Manual operation: See "Select Destination / Source - Import/Export Pulse Train

Files" on page 305

[:SOURce<hw>]:PULM:WIDTh <Width>

Sets the width of the generated pulse. The width determines the pulse length. The pulse width must be at least 20ns less than the set pulse period.

Parameters:

<Width> float

Range: 2 us | 5 ns to 100 s

Increment: 1us | 5 ns *RST: 2 us

Example: PULM:WIDT 33 us

sets a width of 33 us for the pulse.

Options: The enhanced features require option R&S SMF-K23 (Pulse

Generator)

Manual operation: See "Pulse Width - Pulse Generator" on page 298

7.13.17 SOURce:ROSCillator Subsystem

This subsystem contains the commands for setting the external and internal reference frequency.

The settings of the reference oscillator are not affected by an instrument reset (*RST on page 356). They are only reset to factory state by the factory-preset (:SYSTem: FPReset on page 359).

| [:SOURce]:ROSCillator:EFC:STATe | 555 |
|---|-----|
| [:SOURce]:ROSCillator:EXTernal:FREQuency | |
| [:SOURce]:ROSCillator:EXTernal:RFOFf[:STATe] | 556 |
| [:SOURce]:ROSCillator:EXTernal:SBANdwidth | 556 |
| [:SOURce]:ROSCillator[:INTernal]:ADJust:VALue | 557 |
| [:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] | 557 |
| [:SOURce]:ROSCillator:SOURce | 558 |
| [:SOURce]:ROSCillator:OUTPut:SOURce | 558 |

[:SOURce]:ROSCillator:EFC:STATe <State>

The command activates/deactivates the electronic frequency control.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: ---

Example: ROSC:EFC:STAT ON

activates the electronic frequency control.

Manual operation: See "EFC - Reference Oscillator" on page 161

[:SOURce]:ROSCillator:EXTernal:FREQuency < Frequency >

The command informs the instrument of the frequency of the external reference. Entries are possible in 1 MHz steps.

Parameters:

<Frequency> float

Range: 1E6 to 2E7

Increment: 1E6 *RST: 1E7

Example: ROSC:SOUR EXT

selects the external source. The reference must be input at the

REF IN input connector.
ROSC:EXT:FREQ 5 MHz

informs the instrument that the external reference frequency is 5

MHz.

Manual operation: See "External Reference Frequency" on page 160

[:SOURce]:ROSCillator:EXTernal:RFOFf[:STATe] <State>

Activates that RF output is automatically switched off, when in external source mode no reference signal is supplied.

This setting ensures that no improper RF signal due to the missing external reference signal is output and used for measurements.

In addition to the error message "Ext Ref missing", the instrument generates the message "RF output deactivated'.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: --

Example: ROSC:SOUR EXT

selects the external source. The reference must be input at the

REF IN input.

Example: ROSC:EXT:RFOF:STAT ON

In case of a missing external signal, no RF signal is output.

Manual operation: See "Deactivate RF Output (if external reference is missing)"

on page 160

[:SOURce]:ROSCillator:EXTernal:SBANdwidth <SBandwidth>

Sets the synchronization bandwidth for an external reference signal.

Parameters:

<SBandwidth> WIDE | NARRow

NARRow

The synchronization bandwidth is approx. 1 Hz.

WIDE

The synchronization bandwidth is approx. 750 Hz.

This setting is provided for using very precise reference sources of high spectral purity. You can operate the instrument in this mode, when the external reference frequency is 10 MHz, see [: SOURce]:ROSCillator:EXTernal:FREQuency. If another frequency is set, a "Data out for range" error message is gener-

ated.

Example: ROSC:SOUR EXT

selects the external source. ROSC: EXT: FREQ 10 MHz

informs the instrument that the external reference has a fre-

quency of 10 MHz.
ROSC:EXT:SBAN WID

selects wideband setting for synchronization bandwidth.

Manual operation: See "Synchronization Bandwidth" on page 160

[:SOURce]:ROSCillator[:INTernal]:ADJust:VALue <Value>

Specifies the frequency correction value (adjustment value).

Parameters:

<Value> integer

Range: 0 to maximum value (see data sheet)

Increment: see data sheet

*RST: ---

Example: ROSC:ADJ:VAL 456

sets the adjustment value to 456.

Manual operation: See "Adjustment DAC Value" on page 161

[:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] <State>

Determines whether the calibrated (OFF) or a user-defined (ON) adjustment value is used for fine adjustment of the frequency. With STATe ON, the instrument is no longer in the calibrated state. However, the calibration value is not changed and the instrument resumes the calibrated state after switching the Adjustment State to Off.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: --

Example: ROSC:SOUR INT

selects the internal source.

ROSC: ADJ ON

activates use of a user-defined adjustment value.

ROSC:ADJ:VAL 1400

sets the adjustment value to 1400.

Manual operation: See "Adjustment Active" on page 161

[:SOURce]:ROSCillator:SOURce <Source>

Selects the reference frequency source.

Parameters:

<Source> INTernal | EXTernal | ELOop

INTernal

The internal reference oscillator is used.

The reference signal is provided at the REF OUT connector

EXTernal

An external reference signal is used. It must be input at the REF

IN connector at the rear of the instrument.

The instrument is informed of the frequency of the external refer-

ence signal by means of the command [:SOURce]:

ROSCillator: EXTernal: FREQuency.

*RST: ---

Example: ROSC:SOUR EXT

selects the external source. ROSC: EXT: FREQ 5 MHz

informs the instrument that the external reference has a fre-

quency of 5 MHz.

Manual operation: See "Source" on page 160

[:SOURce]:ROSCillator:OUTPut:SOURce <Source>

The command selects the source for the reference oscillator signal output. The external output is only available if the external reference frequency is 10 MHz.

Parameters:

<Source> INTernal | EXTernal

INTernal

The internal reference oscillator signal is output at the REF OUT

connector.

EXTernal

The external reference oscillator signal is output at the REF

OUT connector

*RST: ---

Example: ROSC:OUTP:SOUR EXT

the reference oscillator signal is output at the REF OUT connec-

tor.

Manual operation: See "Output" on page 161

7.13.18 SOURce:SWEep Subsystem

The ${\tt SOURce:}$ subsystem contains the commands for configuring RF sweep signals.

- The keyword [:FREQuency] can be ommitted, then the commands are SCPI-compliant.
- To activate a RF sweep mode, use the following commands:
 - RF frequency sweep: SOURce: FREQuency: MODE SWEep (SOURce: FREQuency: MODE CW (off))
 - RF level sweep: SOURce: POWer: MODE SWEep (SOURce: POWer: MODE CW (off))
- All sweeps, including the LF sweep, can be set independently from each other.

This example shows how to set up a frequency sweep.

1. Set the sweep range.

```
[SOURce:]FREQuency:CENTer 200 MHz [SOURce:]FREQuency:SPAN 300 MHz
```

2. Select linear or logarithmic spacing.

```
[SOURce:]SWEep[:FREQuency]:SPACing LIN
```

3. Set the step width and dwell time.

```
[SOURce:]SWEep[:FREQuency]:STEP:LINear 20 MHz
[SOURce:]SWEep[:FREQuency]:DWELl 12 ms
```

4. Select the trigger mode.

```
TRIGger:]FSWeep:SOURce SINGle
```

5. Select the sweep mode and activate the sweep.

```
[SOURce:]SWEep[:FREQuency]:MODE AUTO
[SOURce:]FREQuency:MODE SWEep
```

6. Trigger the sweep.

```
[SOURce:]SWEep[:FREQuency]:EXECute
```


It is recommended that you switch off the "Start/Stop Display Update" for optimum sweep performance, especially with short dwell times (SYSTem:DISPlay:UPDate OFF).

| [:SOURce <hw>]:SWEep[:FREQuency]:DWELI</hw> | 560 |
|---|-----|
| [:SOURce <hw>]:SWEep[:FREQuency]:EXECute</hw> | 561 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:ACTive</hw> | 561 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:AMPLitude</hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:AOFF</hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:FREQuency</ch></hw> | 562 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:FSTate</ch></hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:PSTate</ch></hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:XFER</hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:MODE</hw> | 563 |
| [:SOURce <hw>]:SWEep[:FREQuency]:POINts</hw> | 564 |
| [:SOURce <hw>]:SWEep[:FREQuency]:RETRace</hw> | 564 |
| [:SOURce <hw>]:SWEep[:FREQuency]:RUNNing?</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:SHAPe</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:SPACing</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:STEP[:LINear]</hw> | 566 |
| [:SOURce <hw>]:SWEep[:FREQuency]:STEP:LOGarithmic</hw> | |
| [:SOURce <hw>]:SWEep[:FREQuency]:TIME</hw> | |
| [:SOURce <hw>]:SWEep:MARKer:OUTPut:POLarity</hw> | 568 |
| [:SOURce <hw>]:SWEep:POWer:AMODe</hw> | 568 |
| [:SOURce <hw>]:SWEep:POWer:DWELI</hw> | 569 |
| [:SOURce <hw>]:SWEep:POWer:EXECute</hw> | 569 |
| [:SOURce <hw>]:SWEep:POWer:MARKer:ACTive</hw> | |
| [:SOURce <hw>]:SWEep:POWer:MARKer:AOFF</hw> | |
| [:SOURce <hw>]:SWEep:POWer:MARKer<ch>:POWer</ch></hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:MARKer<ch>:STATe</ch></hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:MODE</hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:POINts</hw> | |
| [:SOURce <hw>]:SWEep:POWer:RETRace</hw> | |
| [:SOURce <hw>]:SWEep:POWer:RUNNing?</hw> | 572 |
| [:SOURce <hw>]:SWEep:POWer:SHAPe</hw> | |
| [:SOURce <hw>]:SWEep:POWer:SPACing:MODE?</hw> | |
| [:SOURce <hw>]:SWEep:POWer:STEP[:LOGarithmic]</hw> | |
| [:SOURce <hw>]:SWEep:RESet[:ALL]</hw> | 574 |

[:SOURce<hw>]:SWEep[:FREQuency]:DWELI <Dwell>

Sets the time taken for each frequency step of the sweep.

The keyword [: FREQuency] can be omitted (see example). The command is then SCPI-compliant.

Tip: It is recommended to switch off the "Display Update" for optimum sweep performance especially with short dwell times (SYSTem:DISPlay:UPDate OFF).

Parameters:

<Dwell> float

Range: 2E-3 to 100 Increment: 100E-6 *RST: 15E-3

Example: SWE:DWEL 12 ms

sets a dwell time of 12 ms for a frequency sweep at the RF out-

put.

Manual operation: See "Dwell Time - Frequency Sweep" on page 170

[:SOURce<hw>]:SWEep[:FREQuency]:EXECute

Starts an RF frequency sweep cycle manually.

The command is only effective in single mode.

Example: TRIG:FSW:SOUR SING

SOUR: SWE: FREQ: MODE AUT

SWE: FREQ: EXEC

triggers a frequency sweep at the RF output.

Usage: Event

Manual operation: See "Execute Single Sweep - Frequency Sweep" on page 167

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:ACTive <Active>

The command activates the selected marker. The active marker is output with a higher voltage than all other markers.

Parameters:

<Active> NONE | M01 | M02 | M03 | M04 | M05 | M06 | M07 | M08 | M09 |

M10

*RST: NONE

Example: SOUR:SWE:FREQ:MARK:ACT M05

sets marker 5 to be the active marker.

Manual operation: See "Active Marker - RF Frequency Marker" on page 172

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:AMPLitude < Amplitude>

Sets the amplitude marker attenuation. This value is valid for all markers.

Correlation: The output level reduction is applied to a marker with command SOUR: SWE:MARK<[1]...10>:PST ON.

Parameters:

<Amplitude> float

Range: 0 to 3 Increment: 0.1 *RST: 1

Example: SOUR: SWE: FREQ: MARK: AMPL 1

the output level is reduced by 1 dB on reaching the mark.

Manual operation: See "Amplitude - RF Frequency Marker" on page 172

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:AOFF

The command switches off all frequency markers. The command triggers an event and therefore has no query form and no *RST value.

Example: SOUR: SWE: FREQ: MARK: AOFF

switches off all frequency markers.

Usage: Event

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:FREQuency <Frequency>

Sets the frequency of the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the frequency mark.

Parameters:

<Frequency> float

Increment: 0.01

RST: 100 + n 100

Example: SWE:FREQ:MARK1:FREQ 1.5GHz

sets the frequency mark for marker 1 to 1.5 GHz.

Manual operation: See "Frequency - RF Frequency Marker" on page 171

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:FSTate <FState>

The command switches on or off the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the frequency mark.

Parameters:

<FState> 0 | 1 | OFF | ON

*RST: OFF

Example: SWE:MARK1:FST ON

switches on marker 1.

Manual operation: See "State - RF Frequency Marker" on page 171

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer<ch>:PSTate < PState>

Activates or deactivates the selected amplitude marker. If activated, the level is reduced by the amplitude entered with command

[SOURce:] SWEep[:FREQuency]:MARKer:AMPLitude on reaching the mark.

Parameters:

<PState> 0 | 1 | OFF | ON

*RST: OFF

Example: SWE:MARK1:PST ON

the output level is reduced by a constant value if frequency

marker 1 is active.

Manual operation: See "Amplitude Marker - RF Frequency Marker" on page 172

[:SOURce<hw>]:SWEep[:FREQuency]:MARKer:XFER

Copies the frequency value of marker 1 to the start frequency of the sweep and the frequency value of marker 2 to the stop frequency of the sweep.

The command is an event and thus has no *RST-value and no query form.

Dependencies: Sets the start and stop frequency of the sweep.

Example: SWE:MARK:XFER

used the frequency values of marker 1 and 2 to set the start and

stop frequency, respectively.

Usage: Event

[:SOURce<hw>]:SWEep[:FREQuency]:MODE < Mode>

Sets the sweep mode.

The keyword [:FREQuency] can be omitted (see example). The command is then SCPI-compliant.

Parameters:

<Mode> AUTO | MANual | STEP

AUTO

Each trigger triggers exactly one complete sweep.

MANual

The trigger system is not active. Each frequency step of the sweep is triggered individually, either by varying the "Current Frequency" value using the rotary knob under manual control or by means of a FREQ: MAN command under remote control. With manual control, the frequency increases or decreases (depending on the direction of the rotary encoder) by the value specified under FREQ: STEP: INCRement. With remote control, the frequency is set directly with the command: FREQ: MAN.

STEP

Each trigger triggers one sweep step only (Mode Single Step).

The frequency increases by the value entered under

SOUR:SWE:FREQ:STEP:LIN (linear spacing) or ...:STEP:

LOG (logarithmic spacing).

*RST: AUTO

Example: SWE:MODE AUTO

selects **Mode Auto** for a frequency sweep at the RF output.

Manual operation: See "Mode - RF Frequency Sweep" on page 164

[:SOURce<hw>]:SWEep[:FREQuency]:POINts <Points>

Determines the number of steps for the RF frequency sweep within the sweep range.

This parameter always applies to the currently set sweep spacing and correlates with the step size as follows:

 for linear sweeps freq_points = (f_{SPAN} / step_lin) + 1
 To determine the step size, use the command SWE:STEP[:LIN].

logarithmic sweeps and f_{STARt} < f_{STOP}
 freqq_points = ((log f_{STOP} - log f_{STARt}) / log step_log) + 1
 To determine the logarithmic step size, use the command SWE:STEP:LOG.

If you change the number of sweep points, the step size changes accordingly. The sweep range remains the same.

Note: The number of frequency sweep points displayed in the dialog deviates approximately by 1 from the frequency sweep points set with this remote control command.

It is up to the different clculation methods:

- the remote control command determines the number of steps.
- in the dialog, the instrument displays the number of transitions according to:
 Count = (f_{STOP} f_{STARt}) / step_log
 Since Count is an integer, the result may be rounded.

Parameters:

<Points> integer

Range: 2..max

Example: FREQ:STAR

sets the start frequency to 100 MHz.

FREQ:STOP

sets the stop frequency to 500 MHz.

SWE:SPAC LIN

sets linear sweep spacing.

SWE:POIN 401

sets 401 sweep steps for linear sweep spacing. The sweep step

width (STEP) is automatically set to 1 MHz.

Manual operation: See "Count - RF Frequency Sweep" on page 169

[:SOURce<hw>]:SWEep[:FREQuency]:RETRace <State>

Activates that the signal changes to the start frequency value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single".

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRIGO:SWE:SOUR SING

FREQ:MODE SWE SWE:SHAP SAWT SWE:RETR ON

activates retrace function, i.e. the frequency changes to the value at start frequency while waiting for the next trigger event.

Manual operation: See "Retrace - RF Frequency Sweep" on page 168

[:SOURce<hw>]:SWEep[:FREQuency]:RUNNing?

Queries the current state of the frequency sweep mode.

Return values:

Response "1": signal generation in level sweep active.

Usage: Query only

[:SOURce<hw>]:SWEep[:FREQuency]:SHAPe <Shape>

Sets the cycle mode for a sweep sequence (shape).

Parameters:

<Shape> SAWTooth | TRlangle

SAWTooth

One sweep runs from start to stop frequency. Each subsequent sweep starts at the start frequency, i.e. the shape of the sweep

sequence resembles a sawtooth.

TRlangle

One sweep runs from start to stop frequency and back, i.e. the shape of the sweep resembles a triangle. Each subsequent

sweep starts at the start frequency.

*RST: SAWTooth

Example: SOUR: SWE: SHAP TRI

selects the sweep cycle with alternating ascending and

descending sweep directions.

Manual operation: See "Shape - RF Frequency Sweep" on page 168

[:SOURce<hw>]:SWEep[:FREQuency]:SPACing <Spacing>

Selects the mode for the calculation of the frequency sweep intervals. The frequency increases or decreases by this value at each step.

The keyword [:FREQuency] can be omitted. Then the command is SCPI-compliant.

Parameters:

<Spacing> LINear | LOGarithmic | RAMP

LINear

With the linear sweep, the step width is a fixed frequency value which is added to the current frequency. The step width for linear sweep is entered in Hz (see [:SOURce<hw>]:SWEep[:

FREQuency]:STEP[:LINear] on page 566).

LOGarithmic

With the logarithmic sweep, the step width is a constant fraction of the current frequency. This fraction is added to the current frequency. The logarithmic step width is entered in % (see [: SOURce<hw>]:SWEep[:FREQuency]:STEP:LOGarithmic on page 567).

RAMP

With the ramp sweep, a synthesized continuous analog frequency sweep is provided for a set sweep time. The sweep time is entered under [:SOURce<hw>]:SWEep[:FREQuency]:

TIME on page 568.
*RST: LINear

SWE:SPAC LIN

selects linear sweep spacing for a frequency sweep at the RF

output.

Manual operation: See "Spacing - Frequency Sweep" on page 167

[:SOURce<hw>]:SWEep[:FREQuency]:STEP[:LINear] <Linear>

Sets the step size for linear RF frequency sweep steps.

This parameter is related to the number of steps ([:SOURce<hw>]:SWEep[:FREQuency]:POINts) within the sweep range as follows:

 $f_{STARt} < f_{STOP}$

Example:

freq_points = (f_{SPAN} / step_lin) + 1

If you change the step size, the number of steps changes accordingly. The sweep range remains the same.

The keywords [:FREQuency] and [:LINear] can be omitted. The command is then SCPI-compliant.

Parameters:

<Linear> float

Range: full frequency range

Increment: see the data sheet: RF characteristics > Resolution

of setting

Example: FREQ:STAR 1GHz

sets the start frequency to 1 GHz.

FREQ:STOP 5GHz

sets the stop frequency to 5 GHz.

SWE:SPAC LIN

sets linear sweep spacing.

SWE:STEP 2 MHz

sets the step width for linear sweep spacing to 2 MHz (RF sweep) at the RF output. The number of sweep steps for linear

sweep spacing (POINts) is automatically set to 2001.

Manual operation: See "Step Lin/Log - Frequency Sweep" on page 169

[:SOURce<hw>]:SWEep[:FREQuency]:STEP:LOGarithmic < Logarithmic>

Sets a logarithmically determined sweep step size for the RF frequency sweep. It is expressed in percent and you must enter the *value* and the unit *PCT* with the command.

The frequency is increased by a logarithmically calculated fraction of the current frequency according to:

 $step_{log_{n+1}} = f_n + step_{log_n} \times f_n$

 $f_{n+1} = f_n + step_log_{n+1}$

with $f_{STARt} < f_{STOP}$ and n = number of sweep steps

This parameter correlates with the number of steps SWE:FREQ:POIN within the sweep range as follows:

freq_points = $((log f_{STOP} - log f_{STARt}) / log step_log) + 1$

If you change the step size, the number of steps changes accordingly. The sweep range remains the same.

Parameters:

<Logarithmic> float

Range: 0.01 to 100 Increment: 1E-3

*RST: 1

Example: FREQ:STAR 1GHz

sets the start frequency to 1 GHz.

FREQ:STOP 5GHz

sets the stop frequency to 5 GHz.

SWE:SPAC LOG

sets logarithmic sweep spacing.

SWE:STEP:LOG 10PCT

sets the step width for logarithmic sweep spacing to 10% of the previous frequency in each instance (for a frequency sweep).

Manual operation: See "Step Lin/Log - Frequency Sweep" on page 169

[:SOURce<hw>]:SWEep[:FREQuency]:TIME <Time>

Sets the sweep time for ramp sweep.

Parameters:

<Time> float

Range: 0.01 to 100 Increment: 1E-4 *RST: 0.015

Example: SOUR: FREQ: TIME 10ms

sets a sweep time of 10 ms for a ramp sweep.

Options: R&S SMF-K4

Manual operation: See "Sweep Time - RF Frequency Sweep" on page 170

[:SOURce<hw>]:SWEep:MARKer:OUTPut:POLarity <Polarity>

The command selects the polarity of the marker signal.

Parameters:

<Polarity> NORMal | INVerted

NORMal

The marker level switches to HIGH after reaching the mark.

INVerted

The marker level switches to LOW after reaching the mark.

*RST: NORMal

Example: SWE:FREQ:MARK:OUTP:POL NORM

sets the marker output polarity to normal.

Options: R&S SMF-B20

Manual operation: See "Marker Polarity" on page 121

[:SOURce<hw>]:SWEep:POWer:AMODe <AMode>

Selects the ranges of level settings for the level sweep. The sweep is either performed in the low level or in the high level ranges.

Parameters:

<AMode> AUTO | FIXed | NORMal | HPOWer | MANual

NORMal

The level settings are made in the range of the electronically switching attenuator. The high level ranges are not available.

HPOWe

The level settings are made in the high level range.

*RST: NORMal(HighPower)|AUTO

Example: SWE:POW:AMOD HPOW

selects the high level ranges for level sweep.

[:SOURce<hw>]:SWEep:POWer:DWELI < Dwell>

Sets the time taken for each level step of the sweep.

Tip: It is recommended to switch off the "Display Update" for optimum sweep performance especially with short dwell times (SYSTem:DISPlay:UPDate OFF).

Parameters:

<Dwell> float

Range: 1E-3 to 100 Increment: 100E-6 *RST: 15E-3

Example: SWE:POW:DWEL 12 ms

sets a dwell time of 12 ms for a level sweep at the RF output.

Manual operation: See "Dwell Time - Level Sweep" on page 191

[:SOURce<hw>]:SWEep:POWer:EXECute

Triggers a sweep.

The sweep to be executed depends on the set sweep mode (SOURce: SWEep: POWer: MODE). The command corresponds to the manual-control command "Execute Trigger".

Example: SWE:POW:MODE STEP

sets the STEP trigger mode, i.e. a trigger starts the sweep ini-

tially, and then the sweep is generated continuously.

SWE: POW: EXEC

triggers a level sweep at the RF output.

Usage: Event

Manual operation: See "Execute Single Sweep - Level Sweep" on page 190

[:SOURce<hw>]:SWEep:POWer:MARKer:ACTive <Active>

The command activates the selected marker. The active marker is output with an higher voltage than all other markers.

Parameters:

M10

*RST: NONE

Example: SWE:POW:MARK:ACT M05

sets marker 5 to be the active marker.

Manual operation: See "Active Marker - RF Level Marker" on page 194

[:SOURce<hw>]:SWEep:POWer:MARKer:AOFF

The command switches off all level markers. The command triggers an event and therefore has no guery form and no *RST value.

Example: SOUR: SWE: POW: MARK: AOFF

switches off all level markers.

Usage: Event

[:SOURce<hw>]:SWEep:POWer:MARKer<ch>:POWer < Power>

The command sets the level of the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the level mark.

Parameters:

<Power> float

*RST: 0
Default unit: dBm

Example: SOUR:SWE:POW:MARK1:POW -50

sets the power mark for marker 1 to -50 dBm.

Manual operation: See "Level - RF Level Marker" on page 193

[:SOURce<hw>]:SWEep:POWer:MARKer<ch>:STATe <State>

The command switches on or off the selected marker. If the marker is switched on, the signal level at the MARKER output changes on reaching the level mark.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: OFF

Example: SWE:POW:MARK1:STAT ON

switches on marker 1.

Manual operation: See "State - RF Level Marker" on page 193

[:SOURce<hw>]:SWEep:POWer:MODE <Mode>

Sets the cycle mode of the level sweep.

Parameters:

<Mode> AUTO | MANual | STEP

AUTO

Each trigger triggers exactly one complete sweep.

MANual

The trigger system is not active. Each level step of the sweep is triggered individually, either by varying the "Current Level" value using the rotary knob under manual control or by means of a POW: MAN command under remote control.

With manual control, the level increases or decreases (depending on the direction of the rotary encoder) by the value specified under SOUR: SWE: POW: STEP. With remote control, the level increases by the value specified under SWEep: POW: STEP which each sent: POW: MAN command, irrespective the value entered there.

STEP

Each trigger triggers one sweep step only. The level increases

by the value entered under : SWEep: POWer: STEP.

*RST: AUTO

Example: SWE:POW:MODE AUTO

selects Mode Auto for a level sweep at RF output.

Manual operation: See "Mode - Level Sweep" on page 187

[:SOURce<hw>]:SWEep:POWer:POINts <Points>

Determines the number of steps for the RF level sweep within the sweep range.

This parameter always applies to the currently set sweep spacing and correlates with the step size as follows:

pow_points = (f_{STOP} - f_{STARt} / step_log) + 1

To determine the step size use the command SWE:POW:STEP[:LOG].

If you change the number of sweep points, the step size changes accordingly. The sweep range remains the same.

Note: The number of level sweep points displayed in the dialog deviates approximately by 1 from the level sweep points set with this remote control command.

It is up to the different calculation methods:

- the remote control command determines the number of steps.
- in the dialog, the instrument displays the number of transitions according to:
 Count = (f_{STOP} f_{STARt}) / step_log
 Since Count is an integer the result may be rounded.

Parameters:

<Points> integer

Range: 2...max

Example: POW:STAR - 30 dBm

sets the start frequency to -30 dBm.

POW:STOP - 10 dBm

sets the stop frequency to -10 dBm.

SWE:POW:POIN 20

sets 20 sweep steps. The sweep step width (STEP) is automati-

cally set to 1 dB.

Manual operation: See "Count - RF Level Sweep" on page 191

[:SOURce<hw>]:SWEep:POWer:RETRace <State>

Activates that the signal changes to the start level value while it is waiting for the next trigger event.

You can enable this feature, when you are working with sawtooth shapes in sweep mode "Single" or "External Single".

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: TRIGO:SWE:SOUR SING

POW:MODE SWE

SWE:POW:SHAP SAWT SWE:POW:RETR ON

activates retrace function, i.e. the level changes to the value at

start level while waiting for the next trigger event.

Manual operation: See "Retrace - RF Level Sweep" on page 190

[:SOURce<hw>]:SWEep:POWer:RUNNing?

Queries the current state of the level sweep mode.

Return values:

<State> 0 | 1 | OFF | ON
Example: SWE:POW:RUNN?

Response "1": signal generation in level sweep active.

Usage: Query only

[:SOURce<hw>]:SWEep:POWer:SHAPe <Shape>

Sets the cycle mode for a sweep sequence (shape).

Parameters:

<Shape> SAWTooth | TRlangle

SAWTooth

One sweep runs from the start level to the stop level. The subsequent sweep starts at the start level again, i.e. the shape of

sweep sequence resembles a sawtooth.

TRlangle

One sweep runs from start to stop level and back, i.e. the shape of the sweep resembles a triangle. Each subsequent sweep

starts at the start level again.

*RST: SAWTooth

Example: SOUR: SWE: POW: SHAP TRI

selects the sweep cycle with alternating ascending and

descending sweep directions.

Manual operation: See "Shape - RF Level Sweep" on page 190

[:SOURce<hw>]:SWEep:POWer:SPACing:MODE?

Queries the sweep spacing mode. The sweep spacing for level sweeps is always linear.

Return values:

<Mode> LINear

*RST: LINear

Example: SWE:POW:SPAC:MODE?

queries the sweep spacing for a level sweep at RF output.

Result: LIN linear spacing

Usage: Query only

[:SOURce<hw>]:SWEep:POWer:STEP[:LOGarithmic] < Logarithmic>

Sets a logarithmically determined sweep step size for the RF level sweep. It is expressed in decibels and you must enter the *value* and the unit *dB* with the command.

The level is increased by a logarithmically calculated fraction of the current level according to:

 $step_size_{n+1} = Level_n + step_size_n \times Level_n$

 $Level_{n+1} = Level_n + step_size_{n+1}$

with Level_{STARt} < level_{STOP}, step_size = SWE:POW:STEP[:LOG] and n = number of sweep steps

This parameter correlates with the number of steps SWE:POW:POIN within the sweep range as follows:

level_points = ((Level_{STOP} - Level_{STARt}) / step_size) + 1)

If you change the step size, the number of steps changes accordingly. The sweep range remains the same.

Parameters:

<Logarithmic> float

Increment: 0.01 *RST: 1

Example: SWE:POW:STEP 10dB

sets the step width for logarithmic sweep spacing to 10 dB of the

previous level in each instance (for a level sweep).

Manual operation: See "Step - Level Sweep" on page 191

[:SOURce<hw>]:SWEep:RESet[:ALL]

Resets all active sweeps to the starting point.

Example: SWE:RES

resets all active sweeps to the starting point.

Usage: Event

Manual operation: See "Reset Sweep - Frequency Sweep" on page 167

7.14 STATus Subsystem

This system contains the commands for the status reporting system. See also Chapter 6.5, "Status Reporting System", on page 343 for detailed information.

*RST on page 356 has no effect on the status registers.

Value ranges

 Queries return the current value of the respective register, which permits a check of the device status.

Return values: A decimal value in the range 0 to $32767 (=2^{15}-1)$

 The configuration commands set the respective register thus determining which status changes of the R&S SMF cause the status registers to be changed.
 Setting values: A decimal value in the range 0 to 32767 (=2¹⁵-1)

| :STATus:OPERation:CONDition | 575 |
|--------------------------------|-----|
| :STATus:OPERation:ENABle | 575 |
| :STATus:OPERation[:EVENt] | 575 |
| :STATus:OPERation:NTRansition | 575 |
| :STATus:OPERation:PTRansition | 576 |
| :STATus:PRESet | 576 |
| :STATus:QUEStionable:CONDition | 576 |
| :STATus:QUEStionable:ENABle | 576 |
| :STATus:QUEStionable[:EVENt] | 577 |
| | |

| :STATus:QUEStionable:NTRansition | 577 |
|----------------------------------|-----|
| :STATus:QUEStionable:PTRansition | 577 |
| :STATus:QUEue[:NEXT]? | 578 |

:STATus:OPERation:CONDition < Condition>

Sets the content of the CONDition part of the STATus:OPERation register. This part contains information on the action currently being performed in the instrument. The content is not deleted after being read out because it indicates the current hardware status.

Parameters:

<Condition> string

Example: :STATus:OPERation:CONDition?

queries the Status:Operation:Condition register.

:STATus:OPERation:ENABle < Enable >

Sets the bits of the ENABle part of the STATus:OPERation register. This setting determines which events of the Status-Event part are forwarded to the sum bit in the status byte. These events can be used for a service request.

Parameters:

<Enable> string

Example: :STAT:OPER:ENAB 32767

all events are forwarded to the sum bit of the status byte.

:STATus:OPERation[:EVENt] <Event>

Queries the content of the EVENt part of the STATus:OPERation register. This part contains information on the actions performed in the instrument since the last readout. The content of the EVENt part is deleted after being read out.

Parameters:

<Event> string

Example: :STAT:OPER:EVEN?

queries the STATus:OPERation:EVENt register.

:STATus:OPERation:NTRansition < Ntransition>

Sets the bits of the NTRansition part of the STATus:OPERation register. If a bit is set, a transition from 1 to 0 in the condition part causes an entry to be made in the EVENt part of the register. The disappearance of an event in the hardware is thus registered, for example the end of an adjustment.

Parameters:

<Ntransition> string

Example: :STAT:OPER:NTR 0

a transition from 1 to 0 in the condition part of the Status:Operation register does not cause an entry to be made in the EVENt

part.

:STATus:OPERation:PTRansition < Ptransition>

Sets the bits of the PTRansition part of the STATus:OPERation register. If a bit is set, a transition from 0 to 1 in the condition part causes an entry to be made in the EVENt part of the register. A new event in the hardware is thus registered, for example the start of an adjustment.

Parameters:

<Ptransition> string

Example: :STAT:OPER:PTR 32767

all transitions from 0 to 1 in the condition part of the Status:Operation register cause an entry to be made in the EVENt part.

:STATus:PRESet <Preset>

Resets the status registers. All PTRansition parts are set to FFFFh (32767), i.e. all transitions from 0 to 1 are detected. All NTRansition parts are set to 0, i.e. a transition from 1 to 0 in a CONDition bit is not detected. The ENABle parts of STATus:OPERation and STATus:QUEStionable are set to 0, i.e. all events in these registers are not passed on.

Parameters:

<Preset> string

Example: STAT: PRES

resets the status registers.

:STATus:QUEStionable:CONDition < Condition>

Queries the content of the CONDition part of the STATus:QUEStionable register. This part contains information on the action currently being performed in the instrument. The content is not deleted after being read out since it indicates the current hardware status.

Parameters:

<Condition> string

Example: :STATus:QUEStionable:CONDition?

queries the Status:Questionable:Condition register.

:STATus:QUEStionable:ENABle < Enable >

Sets the bits of the ENABle part of the STATus:QUEStionable register. This setting determines which events of the Status-Event part are enabled for the sum bit in the status byte. These events can be used for a service request.

Parameters:

<Enable> string

Example: STAT:OPER:ENAB 1

problems when performing an adjustment cause an entry to be

made in the sum bit.

:STATus:QUEStionable[:EVENt] <Event>

Queries the content of the EVENt part of the STATus:QUEStionable register. This part contains information on the actions performed in the instrument since the last readout. The content of the EVENt part is deleted after being read out.

Parameters:

<Event> string

Example: STAT:QUES:EVEN?

queries the Status:Questionable:Event register.

:STATus:QUEStionable:NTRansition < Ntransition >

Sets the bits of the NTRansition part of the STATus:QUEStionable register. If a bit is set, a transition from 1 to 0 in the condition part causes an entry to be made in the EVENt part of the register.

Parameters:

<Ntransition> string

Example: STAT:OPER:NTR 0

a transition from 1 to 0 in the condition part of the Status:Questionable register does not cause an entry to be made in the

EVENt part

:STATus:QUEStionable:PTRansition <PTransition>

Sets the bits of the NTRansition part of the STATus:QUEStionable register. If a bit is set, a transition from 1 to 0 in the condition part causes an entry to be made in the EVENt part of the register.

Parameters:

<PTransition> string

Example: :STAT:OPER:PTR 32767

all transitions from 0 to 1 in the condition part of the Status:Questionable register cause an entry to be made in the

EVENt part

:STATus:QUEue[:NEXT]?

Queries the oldest entry in the error queue and then deletes it. Positive error numbers denote device-specific errors, and negative error numbers denote error messages defined by SCPI. If the error queue is empty, 0 ("No error") is returned.

The command is identical to :SYSTem:ERRor[:NEXT]? on page 581.

Return values:

<Next> string

Example: :STATus:QUEue?

queries the oldest entry in the error queue.

Response: 0, 'no error'

no errors have occurred since the error queue was last read out

Usage: Query only

Manual operation: See "History" on page 80

7.15 SYSTem Subsystem

The SYSTem subsystem contains a series of commands for general functions which do not directly affect signal generation.

| :SYSTem:ERRor:ALL? | 579 |
|---|-----|
| :SYSTem:ERRor:CODE:ALL? | 579 |
| :SYSTem:ERRor:CODE[:NEXT]? | 580 |
| :SYSTem:ERRor:COUNt? | 580 |
| :SYSTem:ERRor[:NEXT]? | 581 |
| :SYSTem:SERRor? | 581 |
| :SYSTem:DLOCk | 581 |
| :SYSTem:KLOCk | 582 |
| :SYSTem:ULOCk | 582 |
| :SYSTem:COMMunicate:GPIB:LTERminator | 582 |
| :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess | 583 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:DOMain | 583 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:HOSTname | 583 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:WORKgroup | |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:DNS | 584 |
| :SYSTem:COMMunicate:NETWork:IPADdress:MODE | 584 |
| :SYSTem:COMMunicate:NETWork:IPADdress | 584 |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:GATeway | 585 |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:SUBNet:MASK | 585 |
| :SYSTem:COMMunicate:NETWork:MACaddress | 585 |
| :SYSTem:COMMunicate:NETWork:STATus? | 585 |
| :SYSTem:COMMunicate:NETWork:RESTart | 586 |
| :SYSTem:COMMunicate:GPIB:RESource? | 586 |
| :SYSTem:COMMunicate:NETWork:RESource? | 586 |
| :SYSTem:COMMunicate:HISLip:RESource? | |
| :SYSTem:COMMunicate:USB:RESource? | 587 |

| :SYSTem:COMMunicate:SERial:RESource? | 587 |
|--------------------------------------|-----|
| :SYSTem:COMMunicate:SERial:BAUD | 587 |
| :SYSTem:COMMunicate:SERial:PARity | 588 |
| :SYSTem:COMMunicate:SERial:SBITs | 588 |
| :SYSTem:COMMunicate:SOCKet:RESource? | 588 |
| :SYSTem:IDENtification | 588 |
| :SYSTem:LANGuage | 589 |
| :SYSTem:PROTect <ch>[:STATe]</ch> | 589 |
| :SYSTem:REBoot | 590 |
| :SYSTem:RESTart | 590 |
| :SYSTem:SHUTdown | 590 |
| :SYSTem:STARtup:COMPlete? | 590 |
| :SYSTem:DISPlay:UPDate | 590 |
| :SYSTem:DATE | 590 |
| :SYSTem:HCLear | 591 |
| :SYSTem:TIME | 591 |
| :SYSTem:TIME:ZONE | 592 |
| :SYSTem:TIME:ZONE:CATalog? | 592 |
| :SYSTem:VERSion? | 592 |
| :SYSTem:BIOS:VERSion? | 592 |
| :SYSTem:OSYStem? | |
| :SYSTem:MMEMory:PATH:USER? | 593 |

:SYSTem:ERRor:ALL?

Queries the error/event queue for all unread items and removes them from the queue. The response is a comma separated list of error number and a short description of the error in FIFO order.

Positive error numbers are instrument-dependent. Negative error numbers are reserved by the SCPI standard.

Return values:

<All> string

List of: Error/event_number,"Error/event_description>[;Device-

dependent info]"

If the queue is empty, the response is 0, "No error"

Example: SYST:ERR:ALL?

queries all entries in the error queue.
Response: 0, 'no error'

No errors have occurred since the error queue was last read out.

Usage: Query only

Manual operation: See "Del. volatile" on page 80

:SYSTem:ERRor:CODE:ALL?

Queries all entries in the error queue and then deletes them. Only the error numbers are returned and not the entire error text.

Return values:

<All> string

0

"No error", i.e. the error queue is empty

positive value

Positive error numbers denote device-specific errors

negative value

Negative error numbers denote error messages defined by

SCPI.

Example: SYST:ERR:CODE:ALL

queries all entries in the error queue.

Response: 0

no errors have occurred since the error queue was last read out.

Usage: Query only

:SYSTem:ERRor:CODE[:NEXT]?

Queries the oldest entry in the error queue and then deletes it. Only the error number is returned and not the entire error text.

Return values:

<Next> string

0

"No error", i.e. the error queue is empty

positive value

Positive error numbers denote device-specific errors

negative value

Negative error numbers denote error messages defined by

SCPI.

Example: SYST:ERR:CODE

queries the oldest entry in the error queue.

Response: 0

No errors have occurred since the error queue was last read out.

Usage: Query only

:SYSTem:ERRor:COUNt?

Queries the number of entries in the error queue. If the error queue is empty, '0' is returned.

Return values:

<Count> string

Example: SYST:ERR:COUN

queries the number of entries in the error queue.

Response: 1

One error has occurred since the error queue was last read out.

Usage: Query only

:SYSTem:ERRor[:NEXT]?

Queries the error/event queue for the oldest item and removes it from the queue. The response consists of an error number and a short description of the error.

Positive error numbers are instrument-dependent. Negative error numbers are reserved by the SCPI standard.

Return values:

<Next> string

Error/event number, "Error/event description>[;Device-depend-

ent info]"

If the queue is empty, the response is 0, "No error"

Example: SYST:ERR?

queries the oldest entry in the error queue.

Response: 0, 'no error'

No errors have occurred since the error queue was last read out.

Usage: Query only

Manual operation: See "History" on page 80

:SYSTem:SERRor?

This command returns a list of all errors existing at the time when the query is started. This list corresponds to the display on the info page under manual control.

Return values:

<StaticErrors> string

Example: SYSTem: SERRor?

queries all errors existing in the error queue.

Response: -221, 'Settings conflict', 153,

'Input voltage out of range'

the two returned errors have occurred since the error queue was

last queried.

Usage: Query only

:SYSTem:DLOCk <DispLockStat>

Disables the display, or enables it again (OFF).

The command disables also the front panel keyboard of the instrument including the LOCAL key.

Parameters:

<DispLockStat> 0 | 1 | OFF | ON

*RST: 0

Example: SYST:DLOC ON

locks the display. To unlock the display SYST: DLOC OFF.

Manual operation: See "User Interface" on page 132

:SYSTem:KLOCk <State>

Keyboard **LOC**k disables the front panel keyboard of the instrument including the LOCAL key, or enables it again (OFF).

The command disables also the front panel keyboard of the instrument including the LOCAL key.

Parameters:

<State> 0 | 1 | OFF | ON

*RST: 0

Example: SYST: KLOC ON

locks the front panel and external controls. To enable the con-

trols, set SYST: KLOC OFF.

Manual operation: See "User Interface" on page 132

:SYSTem:ULOCk < Mode>

Locks or unlocks the user interface of the instrument.

Parameters:

<Mode> ENABled | DONLy | DISabled

ENABled

Unlocks the display and all controls for the manual operation.

DONLy

Locks the controls for the rmanual operation of the instrument.

The display shows the current settings.

DISabled

Locks the controls for the rmanual operation, and enables remote operation over VNC. The display shows the current set-

tings.

*RST: ENABled

Example: SYST:ULOC ON

activates the user interface lock.

Manual operation: See "User Interface" on page 132

:SYSTem:COMMunicate:GPIB:LTERminator <LTerminator>

Sets the terminator recognition for remote control via GPIB bus.

Parameters:

<LTerminator> STANdard | EOI

EOI

The terminator must be sent together with the line message EOI (End of Line). This setting is recommended for binary block transmissions where a character could coincidentally have the value LF (Line Feed) but is not intended as the terminator. This setting must be selected for block data with undefined length.

STANdard

An LF (Line Feed) is recognized as the terminator regardless of

whether it is sent with or without EOI.

*RST: STANdard

Example: SYSTem:COMMunicate:GPIB:LTERminator EOI

only a character which is sent simultaneously with the line mes-

sage EOI is accepted as the terminator.

:SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <Address>

Sets the GPIB address.

Parameters:

<Address> integer

Range: 1 to 30 *RST: 28

Example: SYSTem:COMMunicate:GPIB:SELF:ADDRess 28

sets GPIB address.

Manual operation: See "GPIB channel address" on page 123

:SYSTem:COMMunicate:NETWork[:COMMon]:DOMain < Domain>

Sets the primary suffix, that is the DNS name without the host name part.

Parameters:

<Domain> string

Example: SYSTem:COMMunicate:NETWork:COMMon:DOMain

'ABC.DE'

sets the domain of the network.

Manual operation: See "DNS Suffix" on page 119

:SYSTem:COMMunicate:NETWork[:COMMon]:HOSTname < Hostname >

Sets the individual host name of the R&S SMF.

Note: it is recommended that you do not change the host name in order to avoid problems with the networdk connection. However, if you change the host name be sure to use an unique name.

The host name is a protected parameter, To change it, first disable protection level 1 with command :SYSTem:PROTect<ch>[:STATe] on page 589.

Parameters:

<Hostname> string

Example: SYSTem:PROTect1:STATe OFF,123456

SYSTem:COMMunicate:NETWork:HOSTname 'SIGGEN'

sets the individual computer name of the R&S SMF.

Manual operation: See "Hostname" on page 118

:SYSTem:COMMunicate:NETWork[:COMMon]:WORKgroup <Workgroup>

Sets the individual workgroup name of the instrument.

Parameters:

<Workgroup> string

Example: SYSTem:COMMunicate:NETWork:COMMon:WORKgroup

'TEST 09'

sets the workgroup name

Manual operation: See "Workgroup" on page 118

:SYSTem:COMMunicate:NETWork[:IPADdress]:DNS < DNS >

Determines the net DNS server to resolve the name.

Parameters:

<DNS> string

Example: SYST:COMM:NETW:IPAD:DNS 123.456.0.1

Manual operation: See "DNS Server" on page 120

:SYSTem:COMMunicate:NETWork:IPADdress:MODE < Mode>

Selects manual or automatic setting of the IP address.

Parameters:

<Mode> AUTO | STATic

*RST: AUTO

Example: SYSTem:COMMunicate:NETWork:IPADdress:MODE AUTO

the IP address is assigned automatically (DHCP)

Manual operation: See "Address Mode" on page 119

:SYSTem:COMMunicate:NETWork:IPADdress < IpAddress >

Sets the IP address.

Parameters:

<lpAddress> string

Range: 0.0.0.0. to ff.ff.ff.ff

Example: SYSTem:COMMunicate:NETWork:IPADdress '7.8.9.10'

sets the IP address of the instrument.

Manual operation: See "IP Address" on page 119

:SYSTem:COMMunicate:NETWork[:IPADdress]:GATeway < Gateway >

Sets the IP address of the default gateway.

Parameters:

<Gateway> string

Range: 0.0.0.0 to ff.ff.ff.ff

Example: SYSTem:COMMunicate:NETWork:IPADdress:GATeway

'1.2.3.4'

sets the IP address of the default gateway.

Manual operation: See "Default Gateway" on page 119

:SYSTem:COMMunicate:NETWork[:IPADdress]:SUBNet:MASK < Mask >

Sets the subnet mask.

Parameters:

<Mask> string

Example: SYSTem:COMMunicate:NETWork:IPADdress:SUBNet:

MASK '255.255.0.0' determines the subnet mask.

Manual operation: See "Subnet Mask" on page 119

:SYSTem:COMMunicate:NETWork:MACaddress < MacAddress >

Queries the MAC address of the network adapter.

Parameters:

<MacAddress> string

Example: SYST:COMM:NETW:MAC

queries the MAC address.

Manual operation: See "MAC Address" on page 120

:SYSTem:COMMunicate:NETWork:STATus?

Queries the network configuration state.

Return values:

<State> 0 | 1 | OFF | ON

Usage: Query only

Manual operation: See "Network Status" on page 118

:SYSTem:COMMunicate:NETWork:RESTart

Restarts the network connection to the instrument, terminates the connection and sets it up again.

Example: SYSTem:COMMunicate:NETWork:RESTart

Usage: Event

Manual operation: See "Restart Network" on page 120

:SYSTem:COMMunicate:GPIB:RESource?

Queries the visa resource string for remote control via the GPIB interface.

To change the GPIB address, use the command :SYSTem:COMMunicate:GPIB[: SELF]:ADDRess.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:GPIB:RESource?

queries the VISA resource string. Response: "GPIB::28::INSTR"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:COMMunicate:NETWork:RESource?

Queries the VISA resource string, used for remote control of the instrument with VXI-11 protocol.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:NETWork:RESource?

Response: "TCPIP::192.1.2.3::INSTR"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:COMMunicate:HISLip:RESource?

Queries the VISA resource string, used for remote control of the instrument with HiSLIP protocol.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:HISLip:RESource?

Response: "TCPIP::192.1.2.3::hislip0::INSTR"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:COMMunicate:USB:RESource?

Queries the visa resource string for remote control via the USB interface.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:USB:RESource?

queries the VISA resource string for remote control via the USB

interface.

Response: "USB::72::000000::INSTR"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:COMMunicate:SERial:RESource?

Queries the visa resource string for the serial remote control interface. This string is used for remote control of the instrument.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:SERial:RESource?

queries the VISA resource string. Response: "ASRL1::INSTR"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:COMMunicate:SERial:BAUD <Baud>

Sets the baudrate for the serial remote control interface.

Parameters:

<Baud> 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200

*RST: 115200

Example: SYSTem:COMMunicate:SERial:BAUD 115200

determines 115200 baudrate.

Manual operation: See "Baud Rate" on page 124

:SYSTem:COMMunicate:SERial:PARity <Parity>

Sets the parity for the serial remote control interface.

Parameters:

<Parity> NONE | ODD | EVEN

*RST: NONE

Example: SYST:COMM:SER:PAR NONE

selects parity NONE.

Manual operation: See "Parity" on page 124

:SYSTem:COMMunicate:SERial:SBITs <SBits>

Sets the number of stop bits for the serial remote control interface.

Parameters:

<SBits> 1 | 2

*RST: 1

Example: SYST:COMM:SER:SBIT 2

selects 2 stop bits.

Manual operation: See "Stop Bits" on page 124

:SYSTem:COMMunicate:SOCKet:RESource?

Queries the visa resource string for remote control via LAN interface, using TCP/IP socket protocol.

Return values:

<Resource> string

Example: SYSTem:COMMunicate:SOCKet:RESource?

Response: "TCPIP::10.113.1.150::5025::SOCKET"

Usage: Query only

Manual operation: See "Visa Resource Strings" on page 124

:SYSTem:IDENtification < Identification>

Selects the mode the instrument identification is performed.

Parameters:

<Identification> AUTO | USER

AUTO

The "IDN String" and the "OPT String" are set automatically.

USER

Enables the selection of user definable "IDN String" and "OPT

String".

*RST: AUTO

Example: SYST: IDEN USER

selects the user defined identification string.

Manual operation: See "Mode" on page 125

:SYSTem:LANGuage <Language>

Sets the remote control command set.

The instrument can also be remote controlled via the command set of several other generators, for example HP generator. See the Application Note 1GP71 at the download area of the product site on the Internet.

Note: While working in a emulation mode, the instrument's specific command set is disabled, i.e. the SCPI command SYSTem: LANGuage will be discarded.

The return to the SCPI command set of the R&S SMF can only be performed by using the appropriate command of the selected command set. For example, the HP command EX returns to the instrument-specific GPIB command set (selection SYST: LANG 'HPXXXX').

Parameters:

<Language> string

Example: SYSTem:LANGuage "SCPI"

sets the SCPI command set.

Manual operation: See "Language" on page 125

:SYSTem:PROTect<ch>[:STATe] <State>[, <Key>]

Activates/deactivates the specified protection level.

Parameters:

<State> select

*RST: 1

Setting parameters:

<Key> integer

The respective functions are disabled when the protection level is activated. No password is required for activation. A password must be entered to deactivate the protection level. The pass-

word for the first level is 123456.

This protection level can be used to lock-out internal adjust-

ments.

Example: SYSTem:PROTect1:STATe ON

activates protection level 1. Internal adjustments are only possi-

ble after deactivating the lock-out.

SYSTem: PROTect1: STATe OFF, 123456

deactivates protection level 1. Internal adjustments are enabled

again.

Manual operation: See "Protection Level/Password" on page 128

:SYSTem:REBoot

Restarts the firmwware and the operating system.

Usage: Event

:SYSTem:RESTart

Restarts the firmware. The operating system remains active.

Usage: Event

:SYSTem:SHUTdown

Shuts down the instrument.

Usage: Event

:SYSTem:STARtup:COMPlete?

Queries if the startup of the instrument is completed.

Return values:

<Complete> 0 | 1 | OFF | ON

*RST: 0

Example: SYST:STAR:COMP

Response: 1

The startup of the instrument is completed.

Usage: Query only

:SYSTem:DISPlay:UPDate <Update>

Switches the update of the display on/off. A switchover from remote control to manual control always sets the status of the update of the display to ON.

Parameters:

<Update> 0 | 1 | OFF | ON

*RST: ON

Example: SYST:DISP:UPD OFF

switches update of displayed parameter values off.

Manual operation: See "Display Update is On/Off" on page 114

:SYSTem:DATE <Year>, <Month>, <Day>

Queries or sets the date for the instrument-internal calendar.

This parameter is protected, in order to prevent accidental changes.

It can be accessed with protection level 1, see :SYSTem:PROTect<ch>[:STATe] on page 589.

Parameters:

<Year> <year>,<month>,<day>

<Month> integer

Range: 1 to 12

<Day> integer

Range: 1 to 31

Example: SYST: DATE?

Response: "2011, 05, 01" it is the 1st of May, 2011.

Manual operation: See "Date" on page 116

:SYSTem:HCLear

Clears the history.

Example: SYST: HCL

Deletes the history entries.

Usage: Event

:SYSTem:TIME <Hour>, <Minute>, <Second>

Queries or sets the time for the instrument-internal clock.

The parameter is protected, in order to prevent accidental changes.

It can be accessed with protection level 1, see :SYSTem:PROTect<ch>[:STATe] on page 589.

Parameters:

<Hour> 0...23,0...59,0...59

Range: 0 to 23

<Minute> integer

Range: 0 to 59

<Second> integer

Range: 0 to 59

Example: SYSTem:TIME?

Response: "12,0,0" it is precisely 12 pm.

Manual operation: See "Time" on page 117

:SYSTem:TIME:ZONE <TimeZone>

Sets the time zone. You can query the list of the available time zones with :SYSTem: TIME:ZONE:CATalog?.

Parameters:

<TimeZone> string

Manual operation: See "Time Zone" on page 117

:SYSTem:TIME:ZONE:CATalog?

Querys the list of available time zones.

Return values: <Catalog>

Usage: Query only

Manual operation: See "Time Zone" on page 117

:SYSTem:VERSion?

Queries the SCPI version the instrument's command set complies with.

Return values:

<Version> string

Example: SYST:VERS

queries the SCPI version. Response: "1996"

The instrument complies with the SCPI version from 1996.

Usage: Query only

:SYSTem:BIOS:VERSion?

Queries the BIOS version of the instrument.

Return values:

<Version> string

Example: SYSTem:BIOS:VERSion?

queries the BIOS version. Response: '123456'

the instrument operates with BIOS version 123456.

Usage: Query only

:SYSTem:OSYStem?

Queries the operating system of the instrument.

TEST Subsystem

Return values:

<OperSystem> string

Example: SYSTem:OSYStem?

Response: "Linux"

Usage: Query only

:SYSTem:MMEMory:PATH:USER?

Queries the user directory, that means the directory the instrument stores user files on.

Return values:

<PathUser> string

Example: SYSTem:MMEMory:PATH:USER?

Response: "/var/user/"

Usage: Query only

7.16 TEST Subsystem

The TEST system contains the commands for performing the routines as well as for direct manipulation of the hardware assemblies (: TEST: DIRect).

The self tests return a "0" if the test is performed successfully, otherwise a value other than "0" is returned. None of the commands of this system have an *RST value.

NOTICE

Improper use may destroy the assembly!

The respective hardware assembly responds directly to the :TEST:DIRect command; any safety mechanisms are bypassed. The command is used for servicing purposes and should not be applied by the user.

:TEST<hw>:DIRect <HW_assembly>,<subadress>,<hex data string>

:TEST<hw>:DIRect? <HW_assembly>,<subadress>

The respective hardware assembly responds directly to the command; any safety mechanisms are bypassed. This function is only available via remote control.

Example: TEST:DIR 'SSYN', 0, #H12345678

TEST:DIR? 'SSYN',0 Response: #H12345678

7.17 TRIGger Subsystem

The TRIGger system contains the commands for selecting the trigger source for the RF and LF sweep. The trigger input connectors are configured in the SOURce: INPut subsystem.

The trigger system of the R&S SMF is a simplified implementation of the SCPI trigger system. The TRIGger system differs from the SCPI system as follows:

- No INITiate command; the instrument behaves as if INITiate: CONTinuous ON were set.
- Under TRIGger several sweep subsystems exist.

Other commands associated with the trigger system of the R&S SMF can be found in the modulation and RF signal subsystems.

TRIGger<hw>

• Suffix TRIGger<1|2> is not permitted

Table 7-2: Cross-reference between the manual and remote control

| R&S name | SCPI name | Command under manual control |
|----------|-----------|--|
| AUTO | IMMediate | "Auto" mode |
| SINGle | BUS | "Single" mode. |
| EXTernal | EXTernal | "Ext Single" and "Ext Step" mode. Use command : SWEep: FREQ: MODE to select between the two sweep modes. |
| EAUTo | - | "Ext Start/Stop" mode. |

| :TRIGger <hw>:FSWeep:SOURce</hw> | 594 |
|---|-----|
| :TRIGger <hw>:FSWeep[:IMMediate]</hw> | 595 |
| :TRIGger <hw>:LFFSweep</hw> | 596 |
| :TRIGger <hw>:LFFSweep:SOURce</hw> | 596 |
| :TRIGger <hw>:LFFSweep:IMMediate</hw> | 597 |
| :TRIGger <hw>:LFVSweep:SOURce</hw> | 597 |
| :TRIGger <hw>:LFVSweep[:IMMediate]</hw> | 598 |
| :TRIGger <hw>:PSWeep:SOURce</hw> | 598 |
| :TRIGger <hw>:PSWeep[:IMMediate]</hw> | 599 |
| :TRIGger <hw>[:SWEep]:SOURce</hw> | 599 |
| :TRIGger <hw>[:SWEep][:IMMediate]</hw> | 600 |
| :TRIGger <hw>[:IMMediate]</hw> | 601 |

:TRIGger<hw>:FSWeep:SOURce <Source>

Sets the trigger source for the RF frequency sweep.

TRIGger Subsystem

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in Table 7-2.

Parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal | EAUTo

AUTO|IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep is started.

SINGle|BUS

One complete sweep cycle is triggered by the GPIB commands

[:SOURce<hw>]:SWEep[:FREQuency]:EXECute,:
TRIGger<hw>:FSWeep[:IMMediate] or *TRG. The mode
has to be set to AUTO (:SOURce:SWEep:FREQuency:MODE
AUTO).

EXTernal

The sweep is triggered externally via the TRIGGER connector or the AUX connector at the rear of the instrument.

EAUTo

The sweep is triggered externally via the INST TRIG connector. As soon as one sweep is finished, the next sweep is started. A second trigger event stops the sweep at the current frequency, a third trigger event starts the trigger at the start frequency, and so on.

*RST: AUTO

Example: TRIG:FSW:SOUR EXT

selects triggering with an external trigger.

Manual operation: See "Mode - RF Frequency Sweep" on page 164

:TRIGger<hw>:FSWeep[:IMMediate]

Immediately starts an RF frequency sweep cycle.

The command is only effective for sweep mode "Single" (SOUR: SWE: FREQ: MODE AUTO in combination with TRIG: FSW: SOUR SING).

The command corresponds to the manual control "Execute Single Sweep".

TRIGger Subsystem

Example: SWE:FREQ:MODE AUTO

sets the triggered sweep mode, i.e. a trigger is required to start

the sweep.

TRIG:FSW:SOUR SING

sets the "Single" trigger mode, i.e. a trigger starts a single

sweep.
TRIG:FSW

starts a single RF frequency sweep.

Usage: Event

Manual operation: See "Execute Single Sweep - Frequency Sweep" on page 167

:TRIGger<hw>:LFFSweep

Usage: Event

Manual operation: See "Execute Single Sweep" on page 282

Immediately starts an LF frequency sweep.

The command is effective in sweep mode "Single" (LFO: SWE: MODE AUTO in combination with TRIG: LFFS: SOUR SING).

:TRIGger<hw>:LFFSweep:SOURce <Source>

Sets the trigger source for the LF sweep. The trigger is triggered by the command :SOURce:LFOutput:SWEep[:FREQuency]EXECute.

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in the Table 7-2.

Parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal | EAUTo

AUTO|IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep is started.

SINGle|BUS

One complete sweep cycle is triggered by the GPIB commands

[:SOURce<hw>]:LFOutput:SWEep[:FREQuency]:
EXECute or *TRG.

The mode has to be set to AUTO ([:SOURce<hw>]:

LFOutput: SWEep [:FREQuency]: MODE).

EXTernal

The sweep is triggered externally via the TRIGGER connector or the AUX connector at the rear of the instrument.

EAUTo

The sweep is triggered externally via the INST TRIG connector. As soon as one sweep is finished, the next sweep is started. A second trigger event stops the sweep at the current frequency, a third trigger event starts the trigger at the start frequency, and so on.

*RST: AUTO

Example: TRIG:LFFS:SOUR EXT

selects triggering with an external trigger.

:TRIGger<hw>:LFFSweep:IMMediate

Immediately starts an LF frequency sweep.

The command is effective in sweep mode "Single" (LFO: SWE: MODE AUTO in combination with TRIG: LFFS: SOUR SING).

Usage: Event

Manual operation: See "Execute Single Sweep" on page 282

:TRIGger<hw>:LFVSweep:SOURce <Source>

The command sets the trigger source for the LF level sweep.

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in the Table 7-2.

Parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal

AUTO | IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep

is started.

SINGle

One complete sweep cycle is triggered by the GPIB bus commands [:SOURce]:LFOutput:SWEep:VOLTage:EXECute or

*TRG. The mode has to be set to "AUTO"

(:SOURce:LFOutput:SWEep:VOLTage:MODE AUTO).

EXTernal

The sweep is triggered externally via the TRIGGER connector or

the AUX connector at the rear of the instrument.

*RST: SINGle

Example: TRIG:LFVS:SOUR EXT

selects triggering with an external trigger. The trigger is input via the TRIGGER connector or the AUX connector at the rear of the

instrument.

Manual operation: See "Mode - LF Level Sweep" on page 291

:TRIGger<hw>:LFVSweep[:IMMediate]

The command starts an LF level sweep.

The command is effective in sweep mode "Single" (LFO: SWE: VOLT: MODE AUTO in combination with TRIG: LFVS: SOUR SING).

Usage: Event

Manual operation: See "Execute Single Sweep - LF Level Sweep" on page 293

:TRIGger<hw>:PSWeep:SOURce <Source>

Sets the trigger source for the RF level sweep.

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in Table 7-2.

Parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal | EAUTo

AUTO|IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep is started.

SINGle|BUS

One complete sweep cycle is triggered by the GPIB commands [:SOURce<hw>]:SWEep:POWer:EXECute, :TRIGger<hw>: PSWeep[:IMMediate] or *TRG. The mode has to be set to AUTO (:SOURce:SWEep:LEVel:MODE AUTO).

EXTernal

The sweep is triggered externally via the TRIGGER connector or the AUX connector.

EAUTo

The sweep is triggered externally via the INST TRIG connector. As soon as one sweep is finished, the next sweep is started. A second trigger event stops the sweep at the current frequency, a third trigger event starts the trigger at the start frequency, and so on.

*RST: AUTO

Example: TRIG:PSW:SOUR EXT

selects triggering with an external trigger.

Manual operation: See "Mode - Level Sweep" on page 187

:TRIGger<hw>:PSWeep[:IMMediate]

Immediately starts an RF level sweep.

The command is only effective for sweep mode "Single" (SOURCE: SWEEp: POWEr: MODE AUTO in combination with TRIG: PSW: SOUR SING).

The command corresponds to the manual control "Execute Single Sweep".

Example: SWE:POW:MODE AUTO

selects the triggered sweep mode, i.e. a trigger is required to

start the sweep.

TRIG:PSW:SOUR SING

sets the single trigger mode, i.e. a trigger starts a single sweep.

TRIG: PSW

starts a single RF level sweep.

Usage: Event

Manual operation: See "Execute Single Sweep - Level Sweep" on page 190

:TRIGger<hw>[:SWEep]:SOURce <Source>

The command sets the trigger source for all sweeps.

The names of the parameters correspond directly to the various settings under manual control. SCPI uses other names for the parameters; these names are also accepted by the instrument. The SCPI names should be used if compatibility is an important consideration.

An overview of the various names is given in the Table 7-2.

Setting parameters:

<Source> AUTO | IMMediate | SINGle | BUS | EXTernal | EAUTo

AUTO|IMMediate

The trigger is free-running, i.e. the trigger condition is fulfilled continuously. As soon as one sweep is finished, the next sweep is started.

SINGle|BUS

One complete sweep cycle is triggered by the GPIB commands: SOURce: SWEep: POWer | FREQuency: EXEC, TRIGger: PSWeep | FSWeep: IMMediate Or *TRG.

If :SOURce:SWEep:POWer:MODE is set to STEP, one step is

executed.

The mode has to be set to AUTO.

EXTernal

The sweep is triggered externally via the INST TRIG connector.

EAUTo

The sweep is triggered externally via the INST TRIG connector. As soon as one sweep is finished, the next sweep is started. A second trigger event stops the sweep at the current frequency, a third trigger event starts the trigger at the start frequency, and so on.

*RST: AUTO

Example: TRIGO:SOUR EXT

selects triggering with an external trigger. The trigger is input via

the INST TRIG connector.

Usage: Setting only

Manual operation: See "Mode" on page 281

:TRIGger<hw>[:SWEep][:IMMediate]

Starts all sweeps which are activated for the respective path. The command starts all sweeps which are activated.

The sweep to be executed depends on the respective MODE setting (:SOUR:SWEep:POW|FREQ:MODE and :SOUR:LFO:SWEep[:FREQ]:MODE).

The command corresponds to the manual-control command "Execute Trigger".

Example: TRIG

starts all active sweeps.

Usage: Event

UNIT Subsystem

Manual operation: See "Execute Single Sweep - Frequency Sweep" on page 167

:TRIGger<hw>[:IMMediate]

The command immediately starts the activated sweep.

The command performs a single sweep and therefore applies to sweep mode AUTO with sweep source SINGle. Use the commands

TRIG:FSW|LFFS|PSW|[:SWE]:SOUR SING, and SOUR:SWE:FREQ|POW:MODE, or SOUR:LFO:SWE:[FREQ:]MODE to set the respective sinlge sweep. You can alternatively use an IMMediate command instead of the respective SWEep:

[FREQ:] | POW: EXECute command.

Example: TRIG

starts all active sweeps.

Usage: Event

Manual operation: See "Execute Single Sweep" on page 282

7.18 UNIT Subsystem

The UNIT subsystem contains the commands specifying which units are valid if no unit is indicated in a command. These settings are valid for the entire instrument.

:UNIT:ANGLe <Angle>

Defines the default unit for the phase modulation angle. It is not valid for commands which determine angle values, e.g. RF phase. It does not influence the manual control parameter unit and the display.

Parameters:

<Angle> DEGRee | RADian

*RST: RADian

Example: UNIT: ANGL DEG

sets DEG as a default unit for all commands which determine

angle values.

:UNIT:POWer < Power>

Defines the default unit for power parameters. This setting affects the GUI, as well as all remote control commands that determine power values.

Parameters:

<Power> V | DBUV | DBM

*RST: DBM

Example: UNIT: POW V

sets V as a default unit for all commands which determine power

values.

UNIT Subsystem

R&S®SMF100A Maintenance

Storing and Packing

8 Maintenance

The instrument does not need periodic maintenance. Only the cleaning of the instrument is essential. The outside of the instrument is suitably cleaned using a soft, line-free dust cloth. Make sure that the air vents are not obstructed.

MARNING

Shock hazard

Before cleaning the instrument, make sure that the instrument is switched off and disconnected from all power supplies.

NOTICE

Instrument damage caused by cleaning agents

Cleaning agents contain substances that may damage the instrument. For example, cleaning agents that contain a solvent may damage the front panel labeling, plastic parts, or the display.

Never use cleaning agents such as solvents (thinners, acetone, etc), acids, bases, or other substances.

The outside of the instrument can be cleaned sufficiently using a soft, lint-free dust cloth.

Follow the instructions in the service manual and the safety instructions when exchanging modules or ordering spares. The order no. for spare parts is included in the service manual. The service manual includes further information particularly on troubleshooting, repair, exchange of modules and alignment.

The address of our support center and a list of all Rohde & Schwarz service centers can be found at the beginning of this manual.

8.1 Storing and Packing

The storage temperature range of the instrument is given in the data sheet. If the instrument is to be stored for a longer period of time, it must be protected against dust.

Repack the instrument as it was originally packed when transporting or shipping. The two protective foam plastic parts prevent the control elements and connectors from being damaged. The antistatic packing foil avoids any undesired electrostatic charging to occur.

If you do not use the original packaging, use a sturdy cardboard box of suitable size and provide for sufficient padding to prevent the instrument from slipping inside the package. Wrap antistatic packing foil around the instrument to protect it from electrostatic charging.

R&S®SMF100A Maintenance

Storing and Packing

Status Information

9 Status Information, Error Messages and Troubleshooting

The R&S SMF distinguishes between a variety of different messages such as status messages, error messages, warnings, or information that are displayed in the "Info" line on the screen, and also entered in the error/event queue of the status reporting system.

This section describes the information and status messages concerning the operating status of the instrument and the types of error messages and warnings. Some error messages require that the error must be eliminated before correct instrument operation can be ensured. The info window with a list of current messages and a detailed description of each message can be opened with the INFO key.

In the remote control mode, error messages are entered in the error/event queue of the status reporting system and can be queried with the command SYSTem: ERRor?. If the error queue is empty, 0 ("No error") is returned. The status reporting system is described in detail in Chapter 6.5, "Status Reporting System", on page 343.

Section Chapter 9.5, "Resolving Network Connection Failures", on page 611 provides recommended solutions for network connection errors, and helps you to collect the information required for quick and efficient support.

9.1 Status Information

The status messages are displayed in the header section of the screen. The status information gives the user an overview of the main operating states and settings of the instrument. The states are indicated for information only and do not necessitate any action by the user. Status information is displayed between the frequency and level fields, at the left of the info line or in the info line itself.

9.1.1 Status information displayed between the frequency and level fields

This section gives an overview of the status messages displayed between the frequency and level fields.

RF OFF

The RF output is switched off

MOD OFF

All modulations are switched off

FREQ OFFSET

A frequency offset is set.

Status Information

The frequency entered and displayed in the "Frequency" field takes any set frequency offset into consideration, e.g. an offset set for a downstream instrument. This means that with a frequency offset the frequency displayed in the header does not correspond to the frequency at the RF output, but rather to the frequency at the output of the downstream instrument.

This allows the target frequency at the output of a downstream instrument to be entered in the frequency field. The signal generator changes the RF output frequency according to the entered offset.

However, the frequency entered and displayed in the "Frequency/Phase" dialog of the "RF" function block always corresponds to the RF output frequency. Any frequency offset is not taken into consideration.

The correlation is as follows:

Freq in header = RF output frequency (= Freq in dialog) + Freq offset (= Offset in dialog)

LEVEL OFFSET

A level offset is set.

The level entered and displayed in the "Level" field takes the offset of any downstream attenuators/amplifiers into consideration by way of calculation. This means that with a level offset the level displayed in the header does not correspond to the level at the RF output, but rather to the level at the output of the downstream instrument.

This allows the target level at the output of downstream instruments to be entered. The signal generator changes the RF output level according to the set offset.

However, the level entered and displayed in the "Level" dialog of the "RF" function block always corresponds to the RF output level. Any level offset is not taken into consideration.

The correlation is as follows:

Level in header = RF output level (= Level in dialog) + Level offset

EXT REF

An external reference is used.

The external signal with selectable frequency and defined level must be input at the REF IN connector. It is output at the REF OUT connector.

BUSY

A setting or calculation is executed.

9.1.2 Status information displayed to the left of the Info line

This section gives an overview of the status messages displayed to the left of the Info line.

REMOTE

Indicates that the instrument is in remote control mode.

The keys on the front panel are usable, but all parameters are in read only mode.

Status Information

To return to manual control, use the LOCAL key or the command >L. The current command must be fully processed before the mode is switched, otherwise the instrument switches immediately back to remote control.

REM-LLO

Indicates that the instrument is in remote control mode with local lockout enabled.

The LOCAL key is locked. To set the local lockout, use the command &LLO (local lockout).

The keys on the front panel are usable, but all parameters are in read only mode.

To return to manual operation or to "REMOTE" state, use one of the following commands:

- &LOCS
 - swichtes directly from "REM-LLO" to manual operation.
- &REMS
 - changes the remote control state from "REM-LLO" to "REMOTE".
- CALL IBLOC (generator%) (Visual Basic command) switches from remote control state to manual operation.

LOC-LLO

For the direct operation the state has been changed from remote control to manual operation (local state). The LOCAL key was disabled with the command $_{LLO}$ (local lockout).

With the next activating of the remote control mode, the instrument cannot be switched to manual operation by the operator. The status information changes to "REM-LLO".

The instrument can be switched to manual operation by means of remote control only (e.g. with the Visual Basic command CALL IBLOC (generator%)).

9.1.3 Status information displayed in the Info line

This section gives an overview of the status messages displayed in the Info line.

RFSweep / LevelSweep / LFSweep

The indicated sweep is enabled.

ALC On / Auto / S&H

The status of the automatic level control is indicated:

- ON
- automatic level control permanently on
- Auto
 - automatic level control is automatically adapted to the operating states
- S&H

automatic level control off, recalibration of the level whenever the level or frequency is set (sample and hold mode)

ListMode

List mode is active.

Error Messages

The values of the frequency/level pairs in the selected list are set for the chosen dwell time.

AttFixed

Attenuator fixed mode is active.

The uninterrupted level settings are made in a fixed range without attenuator switching. The variation range is set automatically when this mode is activated. The range is displayed under "Attenuator Fixed Range" in the "Level" dialog.

UCorr

User Correction is active.

The level is corrected by the given values in the selected user correction list. Correction is performed by the user-defined list values being added to the output level for the respective RF frequency. With frequencies which are not contained in the list, the level correction is determined by interpolation of the closest correction values.

OvenCold

The reference oscillator has not yet reached its nominal frequency.

When switching on from the STANDBY mode, the specified frequency accuracy is reached immediately. If the power switch was switched off, the reference oscillator needs some warm-up time to reach its nominal frequency. During this period of time, the output frequency does not yet reach its final value either.

9.2 Error Messages

Messages indicate errors in the instrument. They are displayed in the info line in different colors depending on their importance and display duration. Errors (e.g. no calibration data) are displayed in red, information (e.g. file not found) and warnings in black. Warnings indicate less significant errors (e.g. the instrument operates outside specified data).

9.2.1 Volatile messages

Volatile messages report automatic settings in the instrument (e.g. switching off of incompatible types of modulation) or on illegal entries that are not accepted by the instrument (e.g. range violations). They are displayed in the info line on a yellow background. They are displayed on top of status information or permanent messages.

Volatile messages do not normally demand user actions and disappear automatically after a brief period of time. They are stored in the history, however.

SCPI command: :SYSTem:ERRor:ALL? or :SYSTem:ERRor[:NEXT]?

Device-Specific Error Messages

9.2.2 Permanent messages

Permanent messages are displayed if an error occurs that impairs further instrument operation, e.g. a hardware fault. The error signaled by a permanent message must be eliminated before correct instrument operation can be ensured.

The message is displayed until the error is eliminated. It covers the status display in the info line. After error elimination, the message automatically disappears and is also recorded in the history.

SCPI command: :SYSTem:SERRor?

9.3 SCPI-Error Messages

The SCPI error messages are the same in all SCPI instruments. Detailed information and an overview of all error messages as defined in SCPI standard can be found in the corresponding documentation.

The errors are assigned negative numbers. The error text being entered into the error/ event queue or being displayed is printed in bold face on the left together with the error code. Below the error text, there is an explanation as to the respective error.

9.4 Device-Specific Error Messages

The following table contains all error messages specific for the instrument in alphabetical order, as well as an explanation of the error situation. The positive error codes mark the errors specific of the instrument.

The device-specific error messages set bit 3 in the ESR register.

The index provides a list of the error messages sorted according to their error codes.

Device-Specific Error Messages

| Error
Code | Error | Description | Remedy |
|---------------|---|--|--|
| 50 | Extern reference out of range or disconnected | External reference is selected but no external signal is applied or the signal is out of range. | Check the selected reference signal source (internal or external) in the "Setup > Reference Oscillator" dialog. Change setting to 'internal' if no appropriate external source is available. |
| 140 | This modulation forces other modulations off | A modulation has been switched on which cannot be used at the same time as an already active modulation. The previous modulation has been switched off. Example: Enabling FM modulation | |
| | | switches PM modulation off. | |
| 180 | Adjustment failed | Adjustment could not be executed | The adjustment data have to be generated first by an internal or external adjustment or to be loaded into the device (see Chapter 5.2.3.1, "Internal Adjustments", on page 104. |
| 182 | Adjustment data missing | Adjustment data are missing. | The adjustment data have to be generated first by an internal or external adjustment or to be loaded into the instrument. |
| 183 | Adjustment data invalid | Adjustment data are invalid and must be restored. | The adjustment data have to be generated again by an internal or external adjustment or to be loaded into the instrument. |
| 200 | Cannot access hard-
ware | The data transmission to a module was unsuccessful. | The module is not installed, not properly installed or missing. |
| 201 | Hardware revision out of date | A later version of certain parts of the instrument is necessary to execute the function selected. | The driver does not support the installed version of a module. |
| 202 | Cannot access the EEPROM | A error occurs when writing or reading a EEPROM. | The EEPROM might be defect and has to be replaced. |
| 203 | Invalid EEPROM data | Reading a EEPROM is possible, however the data are inconsistent. | |
| 204 | Driver initialization failed | Initialization of a driver fails when booting the instrument firmware. | The driver is not compatible with the hardware or software configuration of the instrument. |
| 241 | No current list | There is no list selected. To execute the required operation, a list has to be selected in the related menu. | If no list is available, a new list must be created. |
| 242 | Unknown list type specified | The list type selected is not valid for the required operation. | Check the selected list type. |
| | | For instance, the file extension for waveform list files is *.wv. It is not possible to enter another file extension when selecting a list. | |

Resolving Network Connection Failures

| Error
Code | Error | Description | Remedy |
|---------------|----------------------------|---|--|
| 460 | Cannot open file | The selected file can not be opened. | Check the path and file name. |
| 461 | Cannot write file | The file can not be written. | Check if the file is read-only. |
| 462 | Cannot read file | The file can not be read. | Check if the file contents are compatible with the file type. |
| 463 | Filename missing | The required operation cannot be executed because the file name is not specified. | A file name has to be entered when creating a new list. |
| 464 | Invalid filename extension | The file extension is not valid for the required operation. | Check the file extension. For instance, the file extension for waveform list files is * . wv. It is not possible to enter another file extension when storing a list. |
| 465 | File contains invalid data | The selected file contains data that is not valid for the file type. The file extension determines the data that is valid for this file type. If the file extension is changed the lists are no longer recognized and the data are therefore invalid. Example: the extension of a waveform file (= * .wv) was changed to * .txt | Check the file extension. |

9.5 Resolving Network Connection Failures

Several issues may cause failures in the network connection to the instrument. This section lists the most likely reasons and the recommended solutions.

Common reasons for network connection failures

- Network connecting cables and cable connectors of poor quality
- Incompatibility between the network interface of the R&S SMF and certain switches or routers available on the market
- An invalid IP address assigned to the instrument

Possible solutions

NOTICE

Risk of connection errors

Before configuring the network, changing IP addresses or exchanging hardware, consult your network administrator.

Connection errors can affect the entire network.

Obtaining Technical Support

- Check the network infrastructure. Exchange connecting cables if obvious damage is visible.
- Observe the link status LED on the connected network device. The link status LED is located next to the LAN connector.
 - If a link failure is detected, connect the instrument to a different device port or to a different network device.
- Check whether the LAN interface and the required LAN services are enabled.
 See "LAN Services" on page 131.
- Check whether the IP address of the instrument is within the network's address range.

See Chapter 5.2.3.12, "Network Settings", on page 117.

Check whether IP addresses that were set manually or obtained via the Zeroconf (APIPA) protocol are valid.

9.6 Obtaining Technical Support

If problems occur, the instrument generates error messages which in most cases will be sufficient for you to detect the cause of an error and find a remedy. Error message types are described in Chapter 9, "Status Information, Error Messages and Trouble-shooting", on page 605.

In addition, our customer support centers are there to assist you in solving any problems that you may encounter with your R&S SMF. We will find solutions more quickly and efficiently if you provide us with the information listed below.

- The following dialog boxes in the "Setup > System" menu provide useful information:
 - Hardware Configuration: hardware assemblies
 - Software/Options: the status of all software and hardware options installed on your instrument
- System Messages: displayed in the "Info" line and provide information on any errors that may have occurred

Collect the error information and send an e-mail in which you describe the problem to the customer support address for your region as listed at the beginning of the R&S SMF Getting Started manual.

To remove sensitive data

► For information on how to handle or remove the sensitive data from your instrument, refer to the description "Resolving Security Issues when working with R&S SMF", provided at the product homepage.

Packing and transporting the instrument

If the instrument needs to be transported or shipped, e.g. due to damage during delivery, observe the notes described in Chapter 2.3.2, "Unpacking and Checking the Instrument", on page 30.

R&S®SMF100A Hardware Interfaces

GPIB Bus Interface

Annex

A Hardware Interfaces

This section covers hardware related topics, like pin assignment of the GPIB bus interface.

The remote control interfaces are described in detailes in Chapter 6, "Remote Control Basics", on page 309.

All other interfaces are described in Chapter 2.1, "Front Panel Tour", on page 17 and Chapter 2.2, "Rear Panel Tour", on page 25.

For specifications refer to the data sheet.

A.1 GPIB Bus Interface

Pin assignment

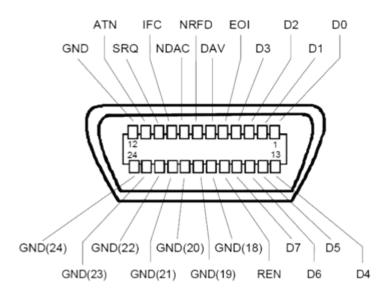


Figure A-1: Pin assignment of GPIB bus interface

Bus lines

- Data bus with 8 lines D0 to D7:
 The transmission is bit-parallel and byte-serial in the ASCII/ISO code. D0 is the least significant bit, D7 the most significant bit.
- Control bus with five lines:

R&S®SMF100A Hardware Interfaces

GPIB Bus Interface

IFC (Interface Clear): active LOW resets the interfaces of the instruments connected to the default setting.

ATN (Attention): active LOW signals the transmission of interface messages, inactive HIGH signals the transmission of device messages.

SRQ (Service Request): active LOW enables the connected device to send a service request to the controller.

REN (Remote Enable): active LOW permits switchover to remote control.

EOI (End or Identify): has two functions in connection with ATN:

- ATN=HIGH active LOW marks the end of data transmission.
- ATN=LOW active LOW triggers a parallel poll.
- Handshake bus with three lines:

DAV (Data Valid): active LOW signals a valid data byte on the data bus.

NRFD (Not Ready For Data): active LOW signals that one of the connected devices is not ready for data transfer.

NDAC (Not Data Accepted): active LOW signals that the instrument connected is accepting the data on the data bus.

Interface Functions

Instruments which can be controlled via GPIB bus can be equipped with different interface functions. The interface function for the R&S SMF are listed in the following table.

Table A-1: GPIB bus interface functions

| Control character | Interface function |
|-------------------|--|
| SH1 | Handshake source function (source handshake), full capability |
| AH1 | Handshake sink function (acceptor handshake), full capability |
| L4 | Listener function, full capability, de-addressed by MTA. |
| Т6 | Talker function, full capability, ability to respond to serial poll, dead-dressed by MLA |
| SR1 | Service request function (Service Request), full capability |
| PP1 | Parallel poll function, full capability |
| RL1 | Remote/Local switch over function, full capability |
| DC1 | Reset function (Device Clear), full capability |
| DT1 | Trigger function (Device Trigger), full capability |

List of Commands

| :CALCulate[:POWer]:SWEep:FREQuency:MATH <ch>:STATe</ch> | 393 |
|--|-----|
| :CALCulate[:POWer]:SWEep:FREQuency:MATH <ch>:SUBTract</ch> | 393 |
| :CALCulate[:POWer]:SWEep:POWer:MATH <ch>:STATe</ch> | 393 |
| :CALCulate[:POWer]:SWEep:POWer:MATH <ch>:SUBTract</ch> | 394 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:AVERage?</ch> | 391 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:FEED</ch> | 391 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:MAXimum?</ch> | 392 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STARt</ch> | 392 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STATe</ch> | 392 |
| :CALCulate[:POWer]:SWEep:TIME:GATE <ch>:STOP</ch> | 392 |
| :CALCulate[:POWer]:SWEep:TIME:MATH <ch>:STATe</ch> | 394 |
| :CALCulate[:POWer]:SWEep:TIME:MATH <ch>:SUBTract</ch> | 394 |
| :CALibration:LFOutput[:MEASure]? | 362 |
| :CALibration <hw>:ALL[:MEASure]?</hw> | 360 |
| :CALibration <hw>:FREQuency[:MEASure]?</hw> | 360 |
| :CALibration <hw>:LEVel:EXTern:DATA</hw> | 361 |
| :CALibration <hw>:LEVel:LOOPgain:STATe</hw> | |
| :CALibration <hw>:LEVel:STATe</hw> | 362 |
| :CALibration <hw>:LEVel[:MEASure]?</hw> | 361 |
| :CALibration <hw>:ROSCillator[:DATA]</hw> | |
| :DEVice:PRESet | |
| :DIAGnostic:INFO:OTIMe? | 364 |
| :DIAGnostic:INFO:POCount? | 364 |
| :DIAGnostic <hw>:BGINfo:CATalog?</hw> | 363 |
| :DIAGnostic <hw>:BGINfo?</hw> | 363 |
| :DISPlay:ANNotation:AMPLitude | 365 |
| :DISPlay:ANNotation:FREQuency | |
| :DISPlay:ANNotation[:ALL] | 365 |
| :DISPlay:DIALog:CLOSe | 365 |
| :DISPlay:DIALog:CLOSe:ALL | 366 |
| :DISPlay:DIALog:ID? | 366 |
| :DISPlay:DIALog:OPEN | 366 |
| :DISPlay:PSAVe:HOLDoff | 366 |
| :DISPlay:PSAVe[:STATe] | 367 |
| :DISPlay:UPDate | |
| :DISPlay[:WINDow][:POWer]:SWEep:BACKground:COLor | 395 |
| :DISPlay[:WINDow][:POWer]:SWEep:GRID:STATe | |
| :FORMat:BORDer | 367 |
| :FORMat:SREGister | 368 |
| :FORMat[:DATA] | 368 |
| :HCOPy:DATA? | 369 |
| :HCOPy:DEVice | 370 |
| :HCOPy:DEVice:LANGuage | 370 |
| :HCOPy:FILE[:NAME] | 371 |
| :HCOPy:FILE[:NAME]:AUTO:DIRectory | 371 |
| :HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar | 371 |
| ·HCODy:EII EI:NIAMEI:ALITO:EII E2 | 372 |

| :HCOPy:FILE[:NAME]:AUTO:STATe | 375 |
|---|-----|
| :HCOPy:FILE[:NAME]:AUTO? | 371 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe | 373 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY? | 372 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe | 373 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh? | 373 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer? | 373 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix | |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe | 374 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe | 375 |
| :HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR? | 374 |
| :HCOPy:IMAGe:FORMat | 375 |
| :HCOPy:IMAGe:SIZE | |
| :HCOPy[:EXECute] | 370 |
| :INITiate <ch>[:POWer]:CONTinuous</ch> | 395 |
| :KBOard:LANGuage | 376 |
| :KBOard:LAYout | |
| :MEMory:HFRee? | 383 |
| :MMEMory:CATalog:LENGth? | 380 |
| :MMEMory:CATalog? | |
| :MMEMory:CDIRectory | |
| :MMEMory:COPY | |
| :MMEMory:DATA | |
| :MMEMory:DCATalog:LENGth? | |
| :MMEMory:DCATalog? | |
| :MMEMory:DELete | |
| :MMEMory:LOAD:STATe | |
| :MMEMory:MDIRectory | |
| :MMEMory:MOVE | |
| :MMEMory:MSIS | |
| :MMEMory:RDIRectory | |
| :MMEMory:STORe:STATe | |
| :OUTPut:ALL[:STATe] | |
| :OUTPut:BLANk:MODE | |
| :OUTPut:BLANk:POLarity | |
| :OUTPut:BLANk:WIDTh | |
| :OUTPut:FPRoportional:SCALe | |
| :OUTPut <hw>:AFIXed:RANGe:LOWer?</hw> | |
| :OUTPut <hw>:AFIXed:RANGe:UPPer?</hw> | |
| :OUTPut <hw>:ALC:SEARch:MODE</hw> | |
| :OUTPut <hw>:AMODe</hw> | |
| :OUTPut <hw>[:STATe]</hw> | |
| :OUTPut <hw>[:STATe]:PON
:READ<ch>[:POWer]?</ch></hw> | |
| :SENSe[:POWer]:SWEep:ABORt | |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:COPY | |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:POINts? | |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:XVALues | |
| :SENSe[:POWer]:SWEep:FREQuency:REFerence:DATA:YVALues | |
| ·SENSe[:POWer]·SWEen·FREQuency:RMODe | 407 |

| :SENSe[:POWer]:SWEep:FREQuency:SPACing[:MODE] | 409 |
|---|-----|
| :SENSe[:POWer]:SWEep:FREQuency:STARt | 409 |
| :SENSe[:POWer]:SWEep:FREQuency:STEPs | 410 |
| :SENSe[:POWer]:SWEep:FREQuency:STOP | 410 |
| :SENSe[:POWer]:SWEep:FREQuency:TIMing[:MODE] | 410 |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO | 411 |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:AUTO:RESet | 412 |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:MAXimum | 412 |
| :SENSe[:POWer]:SWEep:FREQuency:YSCale:MINimum | 412 |
| :SENSe[:POWer]:SWEep:HCOPy:DATA? | 413 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice | 414 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage | 414 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:DPOint | 414 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:HEADer | 415 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV:ORIentation | 415 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:LANGuage:CSV[:COLumn]:SEParator | 415 |
| :SENSe[:POWer]:SWEep:HCOPy:DEVice:SIZE | 416 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME] | 417 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory | 417 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:DIRectory:CLEar | 417 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:FILE? | 418 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO:STATe | 421 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY:STATe | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:DAY? | 418 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh:STATe | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:MONTh? | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:NUMBer? | 419 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix | 420 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:PREFix:STATe | 420 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR:STATe | 421 |
| :SENSe[:POWer]:SWEep:HCOPy:FILE[:NAME]:AUTO[:FILE]:YEAR? | 420 |
| :SENSe[:POWer]:SWEep:HCOPy[:EXECute] | 416 |
| :SENSe[:POWer]:SWEep:INITiate | 421 |
| :SENSe[:POWer]:SWEep:MODE | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:COPY | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:POINts? | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:XVALues | 422 |
| :SENSe[:POWer]:SWEep:POWer:REFerence:DATA:YVALues | 423 |
| :SENSe[:POWer]:SWEep:POWer:RMODe | 423 |
| :SENSe[:POWer]:SWEep:POWer:SPACing[:MODE] | 427 |
| :SENSe[:POWer]:SWEep:POWer:STARt | 427 |
| :SENSe[:POWer]:SWEep:POWer:STEPs | 428 |
| :SENSe[:POWer]:SWEep:POWer:STOP | 428 |
| :SENSe[:POWer]:SWEep:POWer:TIMing[:MODE] | 428 |
| :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO | 429 |
| :SENSe[:POWer]:SWEep:POWer:YSCale:AUTO:RESet | 429 |
| :SENSe[:POWer]:SWEep:POWer:YSCale:MAXimum | 430 |
| :SENSe[:POWer]:SWEep:POWer:YSCale:MINimum | 430 |
| :SENSe[:POWer]:SWEep:RMODe | 430 |
| :SENSe[:POWer]:SWEep:TIME:AVERage[:COUNt] | 431 |

| :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:COPY | |
|---|-----|
| :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:POINts? | 431 |
| :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:XVALues | 432 |
| :SENSe[:POWer]:SWEep:TIME:REFerence:DATA:YVALues | 432 |
| :SENSe[:POWer]:SWEep:TIME:RMODe | 431 |
| :SENSe[:POWer]:SWEep:TIME:SPACing[:MODE] | 435 |
| :SENSe[:POWer]:SWEep:TIME:STARt | 435 |
| :SENSe[:POWer]:SWEep:TIME:STEPs | 436 |
| :SENSe[:POWer]:SWEep:TIME:STOP | 436 |
| :SENSe[:POWer]:SWEep:TIME:TEVents | 436 |
| :SENSe[:POWer]:SWEep:TIME:YSCale:AUTO | 437 |
| :SENSe[:POWer]:SWEep:TIME:YSCale:AUTO:RESet | 437 |
| :SENSe[:POWer]:SWEep:TIME:YSCale:MAXimum | 438 |
| :SENSe[:POWer]:SWEep:TIME:YSCale:MINimum | 438 |
| :SENSe <ch>:UNIT[:POWer]</ch> | 439 |
| :SENSe <ch>[:POWer]:APERture:DEFault:STATe</ch> | 399 |
| :SENSe <ch>[:POWer]:APERture:TIMe</ch> | 399 |
| :SENSe <ch>[:POWer]:CORRection:SPDevice:STATe</ch> | 399 |
| :SENSe <ch>[:POWer]:DISPlay:PERManent:PRlority</ch> | 400 |
| :SENSe <ch>[:POWer]:DISPlay:PERManent:STATe</ch> | 400 |
| :SENSe <ch>[:POWer]:FILTer:LENGth:AUTO?</ch> | 400 |
| :SENSe <ch>[:POWer]:FILTer:LENGth[:USER]</ch> | 401 |
| :SENSe <ch>[:POWer]:FILTer:NSRatio</ch> | 401 |
| :SENSe <ch>[:POWer]:FILTer:NSRatio:MTIMe</ch> | 402 |
| :SENSe <ch>[:POWer]:FILTer:SONCe</ch> | 402 |
| :SENSe <ch>[:POWer]:FILTer:TYPE</ch> | 402 |
| :SENSe <ch>[:POWer]:FREQuency</ch> | 403 |
| :SENSe <ch>[:POWer]:LOGGing:STATe</ch> | 403 |
| :SENSe <ch>[:POWer]:OFFSet</ch> | 404 |
| :SENSe <ch>[:POWer]:OFFSet:STATe</ch> | 404 |
| :SENSe <ch>[:POWer]:SOURce</ch> | 405 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet</ch> | 407 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:OFFSet:STATe</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STARt</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge:STOP</ch> | 409 |
| :SENSe <ch>[:POWer]:SWEep:FREQuency[:SENSor]:SRANge[:STATe]</ch> | 408 |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet</ch> | 423 |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:OFFSet:STATe</ch> | 424 |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency</ch> | 424 |
| :SENSe <ch>[:POWer]:SWEep:POWer[:SENSor]:SFRequency:STATe</ch> | 424 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet</ch> | 425 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:OFFSet:STATe</ch> | 425 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:STATe</ch> | 425 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:BASE</ch> | 426 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:HREFerence</ch> | 426 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:LREFerence</ch> | 427 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:PULSe:THReshold:POWer:REFerence</ch> | 426 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency</ch> | 432 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:SFRequency:STATe</ch> | 433 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:AUTO</ch> | 433 |

| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:DTIMe</ch> | 433 |
|---|-----|
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:HYSTeresis</ch> | 434 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:LEVel</ch> | 434 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SLOPe</ch> | 434 |
| :SENSe <ch>[:POWer]:SWEep:TIME[:SENSor]:TRIGger:SOURce</ch> | 435 |
| :SENSe <ch>[:POWer]:ZERO</ch> | 439 |
| :SOURce <hw>:PRESet</hw> | 359 |
| :STATus:OPERation:CONDition | 575 |
| :STATus:OPERation:ENABle | 575 |
| :STATus:OPERation:NTRansition | 575 |
| :STATus:OPERation:PTRansition | 576 |
| :STATus:OPERation[:EVENt] | 575 |
| :STATus:PRESet | 576 |
| :STATus:QUEStionable:CONDition | 576 |
| :STATus:QUEStionable:ENABle | 576 |
| :STATus:QUEStionable:NTRansition | 577 |
| :STATus:QUEStionable:PTRansition | 577 |
| :STATus:QUEStionable[:EVENt] | 577 |
| :STATus:QUEue[:NEXT]? | 578 |
| :SYSTem:BIOS:VERSion? | 592 |
| :SYSTem:COMMunicate:GPIB:LTERminator | 582 |
| :SYSTem:COMMunicate:GPIB:RESource? | 586 |
| :SYSTem:COMMunicate:GPIB[:SELF]:ADDRess | 583 |
| :SYSTem:COMMunicate:HISLip:RESource? | 586 |
| :SYSTem:COMMunicate:NETWork:IPADdress | 584 |
| :SYSTem:COMMunicate:NETWork:IPADdress:MODE | 584 |
| :SYSTem:COMMunicate:NETWork:MACaddress | 585 |
| :SYSTem:COMMunicate:NETWork:RESource? | 586 |
| :SYSTem:COMMunicate:NETWork:RESTart | 586 |
| :SYSTem:COMMunicate:NETWork:STATus? | 585 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:DOMain | 583 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:HOSTname | 583 |
| :SYSTem:COMMunicate:NETWork[:COMMon]:WORKgroup | 584 |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:DNS | 584 |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:GATeway | |
| :SYSTem:COMMunicate:NETWork[:IPADdress]:SUBNet:MASK | 585 |
| :SYSTem:COMMunicate:SERial:BAUD | 587 |
| :SYSTem:COMMunicate:SERial:PARity | 588 |
| :SYSTem:COMMunicate:SERial:RESource? | 587 |
| :SYSTem:COMMunicate:SERial:SBITs | 588 |
| :SYSTem:COMMunicate:SOCKet:RESource? | 588 |
| :SYSTem:COMMunicate:USB:RESource? | 587 |
| :SYSTem:DATE | 590 |
| :SYSTem:DISPlay:UPDate | 590 |
| :SYSTem:DLOCk | 581 |
| :SYSTem:ERRor:ALL? | 579 |
| :SYSTem:ERRor:CODE:ALL? | 579 |
| :SYSTem:ERRor:CODE[:NEXT]? | 580 |
| :SYSTem:ERRor:COUNt? | 580 |
| ·SVSTem·ERRorf·NEXTI2 | 581 |

| :SYSTem:FPReset | 359 |
|--|-----|
| :SYSTem:HCLear | 591 |
| :SYSTem:IDENtification | 588 |
| :SYSTem:KLOCk | 582 |
| :SYSTem:LANGuage | 589 |
| :SYSTem:MMEMory:PATH:USER? | 593 |
| :SYSTem:OSYStem? | 592 |
| :SYSTem:PRESet | 359 |
| :SYSTem:PROTect <ch>[:STATe]</ch> | 589 |
| :SYSTem:REBoot | 590 |
| :SYSTem:RESTart | 590 |
| :SYSTem:SERRor? | 581 |
| :SYSTem:SHUTdown | 590 |
| :SYSTem:STARtup:COMPlete? | 590 |
| :SYSTem:TIME | 591 |
| :SYSTem:TIME:ZONE | 592 |
| :SYSTem:TIME:ZONE:CATalog? | 592 |
| :SYSTem:ULOCk | 582 |
| :SYSTem:VERSion? | 592 |
| :TEST <hw>:DIRect</hw> | 593 |
| :TRACe[:POWer]:SWEep:MEASurement:FULLscreen:DISPlay:ANNotation[:STATe] | 443 |
| :TRACe[:POWer]:SWEep:MEASurement:GATE:DISPlay:ANNotation[:STATe] | 443 |
| :TRACe[:POWer]:SWEep:MEASurement:MARKer:DISPlay:ANNotation[:STATe] | 444 |
| :TRACe[:POWer]:SWEep:MEASurement:PULSe:DISPlay:ANNotation[:STATe] | 445 |
| :TRACe[:POWer]:SWEep:MEASurement:STANdard:DISPlay:ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:COLor</ch> | 441 |
| :TRACe <ch>[:POWer]:SWEep:COPY</ch> | 441 |
| :TRACe <ch>[:POWer]:SWEep:DATA:POINts?</ch> | 441 |
| :TRACe <ch>[:POWer]:SWEep:DATA:XVALues?</ch> | 442 |
| :TRACe <ch>[:POWer]:SWEep:DATA:YVALues?</ch> | |
| :TRACe <ch>[:POWer]:SWEep:FEED</ch> | 442 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: AVERage: DISPlay: ANN otation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:AVERage?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: HREFerence: DISPlay: ANNotation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:HREFerence?</ch> | |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: LREFerence: DISPlay: ANNotation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:LREFerence?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: MAXimum: DISPlay: ANN otation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MAXimum?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: MINimum: DISPlay: ANN otation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:MINimum?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: PULSe: BASE: DISPlay: ANN otation [:STATe] | |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:BASE?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: PULSe: TOP: DISPlay: ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:PULSe:TOP?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: POWer: REFerence: DISPlay: ANN otation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:POWer:REFerence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:ALL:DISPlay:ANNotation[:STATe]</ch> | 445 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: PULSe: DCYCle: DISPlay: ANN otation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DCYCle?</ch> | 444 |

| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DURation:DISPlay:ANNotation[:STATe]</ch> | 446 |
|---|-----|
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:DURation?</ch> | 444 |
| : TRACe < ch > [:POWer]: SWEep: MEASurement: PULSe: PERiod: DISPlay: ANNotation [:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:PERiod?</ch> | 444 |
| : TRACe < ch>[:POWer]: SWEep: MEASurement: PULSe: SEParation: DISPlay: ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:SEParation?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:PULSe:STATe?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:DURation?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OCCurrence:DISPlay:</ch> | |
| ANNotation[:STATe] | 446 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OCCurrence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot:DISPlay:</ch> | |
| ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:NEGative:OVERshoot?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation:DISPlay:</ch> | |
| ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:DURation?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence:DISPlay:</ch> | |
| ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OCCurrence?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot:DISPlay:</ch> | |
| ANNotation[:STATe] | 447 |
| :TRACe <ch>[:POWer]:SWEep:MEASurement:TRANsition:POSitive:OVERshoot?</ch> | 444 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:BASE?</ch> | 447 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:HREFerence</ch> | 447 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:LREFerence</ch> | 448 |
| :TRACe <ch>[:POWer]:SWEep:PULSe:THReshold:POWer:REFerence</ch> | 448 |
| :TRACe <ch>[:POWer]:SWEep:STATe</ch> | 449 |
| :TRIGger <hw>:FSWeep:SOURce</hw> | 594 |
| :TRIGger <hw>:FSWeep[:IMMediate]</hw> | 595 |
| :TRIGger <hw>:LFFSweep</hw> | 596 |
| :TRIGger <hw>:LFFSweep:IMMediate</hw> | 597 |
| :TRIGger <hw>:LFFSweep:SOURce</hw> | 596 |
| :TRIGger <hw>:LFVSweep:SOURce</hw> | 597 |
| :TRIGger <hw>:LFVSweep[:IMMediate]</hw> | 598 |
| :TRIGger <hw>:PSWeep:SOURce</hw> | 598 |
| :TRIGger <hw>:PSWeep[:IMMediate]</hw> | 599 |
| :TRIGger <hw>[:IMMediate]</hw> | 601 |
| :TRIGger <hw>[:SWEep]:SOURce</hw> | 599 |
| :TRIGger <hw>[:SWEep][:IMMediate]</hw> | 600 |
| :UNIT:ANGLe | 601 |
| :UNIT:POWer | 601 |
| [:SOURce]:CORRection:CSET:CATalog? | 458 |
| [:SOURce]:CORRection:CSET:DELete | 460 |
| [:SOURce]:INPut:TRIGger:SLOPe | 481 |
| [:SOURce]:LFOutput:MONitor:MODE | 486 |
| [:SOURce]:LFOutput:OFFSet | 486 |
| [:SOLIBeal:LEOutput:SWEen:VOLTage:DWELL | 106 |

| [:SOURce]:LFOutput:SWEep:VOLTage:EXECute | 496 |
|---|-----|
| [:SOURce]:LFOutput:SWEep:VOLTage:LFSource | 496 |
| [:SOURce]:LFOutput:SWEep:VOLTage:MARKer:ACTive | 497 |
| [:SOURce]:LFOutput:SWEep:VOLTage:MARKer:AOFF | 497 |
| [:SOURce]:LFOutput:SWEep:VOLTage:MODE | 498 |
| [:SOURce]:LFOutput:SWEep:VOLTage:POINts | 498 |
| [:SOURce]:LFOutput:SWEep:VOLTage:RETRace | 499 |
| [:SOURce]:LFOutput:SWEep:VOLTage:RUNNing? | 499 |
| [:SOURce]:LFOutput:SWEep:VOLTage:SHAPe | 499 |
| [:SOURce]:LFOutput:SWEep:VOLTage:SOURce | 501 |
| [:SOURce]:LFOutput:SWEep:VOLTage:SPACing | |
| [:SOURce]:LFOutput:SWEep:VOLTage:STEP[:LINear] | 500 |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:LFSource | 488 |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:ACTive | 488 |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AMPLitude | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer:AOFF | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:FREQuency</ch> | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:FSTate</ch> | |
| [:SOURce]:LFOutput:SWEep[:FREQuency]:MARKer <ch>:VSTate</ch> | |
| [:SOURce]:LFOutput:VOLTage:MANual | |
| [:SOURce]:LFOutput:VOLTage:MODE | |
| [:SOURce]:LFOutput:VOLTage:STARt | |
| [:SOURce]:LFOutput:VOLTage:STOP | |
| [:SOURce]:LFOutput <ch>:BANDwidth</ch> | |
| [:SOURce]:LFOutput <ch>:FREQuency</ch> | |
| [:SOURce]:LFOutput <ch>:SOURce</ch> | |
| [:SOURce]:LFOutput <ch>:VOLTage</ch> | |
| [:SOURce]:LFOutput <ch>[:STATe]</ch> | |
| [:SOURce]:PM <ch>[:DEViation]</ch> | |
| [:SOURce]:POWer:ATTenuation | |
| [:SOURce]:ROSCillator:EFC:STATe | |
| [:SOURce]:ROSCillator:EXTernal:FREQuency | |
| [:SOURce]:ROSCillator:EXTernal:RFOFf[:STATe] | |
| [:SOURce]:ROSCillator:OUTPut:SOURce | |
| [:SOURce]:ROSCillator:SOURce | |
| [:SOURce]:ROSCillator[:INTernal]:ADJust:VALue | |
| [:SOURce]:ROSCillator[:INTernal]:ADJust[:STATe] | |
| [:SOURce <hw>]:AM:RATio</hw> | |
| [:SOURce <hw>]:AM:SCAN:STATe</hw> | |
| [:SOURce <hw>]:AM<ch>:SENSitivity</ch></hw> | |
| [:SOURce <hw>]:AM<ch>:SOURce</ch></hw> | |
| [:SOURce <hw>]:AM<ch>:STATe</ch></hw> | |
| [:SOURce <hw>]:AM<ch>[:DEPTh]</ch></hw> | |
| [:SOURce <hw>]:CHIRp:BANDwidth</hw> | |
| [:SOURce <hw>]:CHIRp:COMPression:RATio?</hw> | |
| [:SOURce <hw>]:CHIRp:DIRection</hw> | |
| [:SOURce <hw>]:CHIRp:PULSe:PERiod</hw> | |
| [:SOURce <hw>]:CHIRp:PULSe:WIDTh</hw> | |
| [:SOURce <hw>]:CHIRp:STATe</hw> | |

| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:GATE:POLarity</hw> | 455 |
|--|-----|
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:IMPedance</hw> | 455 |
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:LEVel</hw> | 455 |
| [:SOURce <hw>]:CHIRp:TRIGger:EXTernal:SLOPe</hw> | |
| [:SOURce <hw>]:CHIRp:TRIGger:MODE</hw> | 456 |
| [:SOURce <hw>]:CORRection:CSET:DATA:FREQuency</hw> | 458 |
| [:SOURce <hw>]:CORRection:CSET:DATA:FREQuency:POINts?</hw> | 458 |
| [:SOURce <hw>]:CORRection:CSET:DATA:POWer</hw> | |
| [:SOURce <hw>]:CORRection:CSET:DATA:POWer:POINts?</hw> | 459 |
| [:SOURce <hw>]:CORRection:CSET:DATA[:SENSor<ch>][:POWer]:SONCe</ch></hw> | 459 |
| [:SOURce <hw>]:CORRection:CSET[:SELect]</hw> | 464 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:CATalog?</hw> | 460 |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:EXTension</hw> | |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SELect</hw> | |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SEParator:COLumn</hw> | |
| [:SOURce <hw>]:CORRection:DEXChange:AFILe:SEParator:DECimal</hw> | 462 |
| [:SOURce <hw>]:CORRection:DEXChange:EXECute</hw> | |
| [:SOURce <hw>]:CORRection:DEXChange:MODE</hw> | |
| [:SOURce <hw>]:CORRection:DEXChange:SELect</hw> | |
| [:SOURce <hw>]:CORRection:MEASure</hw> | |
| [:SOURce <hw>]:CORRection:PMETer:TYPE</hw> | |
| [:SOURce <hw>]:CORRection:VALue?</hw> | |
| [:SOURce <hw>]:CORRection:ZERoing:STATe</hw> | |
| [:SOURce <hw>]:CORRection[:STATe]</hw> | |
| [:SOURce <hw>]:DM:ASK:DEPTh</hw> | |
| [:SOURce <hw>]:DM:ASK:SOURce</hw> | |
| [:SOURce <hw>]:DM:ASK:STATe</hw> | |
| [:SOURce <hw>]:DM:EXTernal:POLarity<ch></ch></hw> | |
| [:SOURce <hw>]:DM:FSK:DEViation</hw> | |
| [:SOURce <hw>]:DM:FSK:SOURce</hw> | |
| [:SOURce <hw>]:DM:FSK:STATe</hw> | |
| [:SOURce <hw>]:DM:PSK:DEViation</hw> | |
| [:SOURce <hw>]:DM:PSK:SOURce</hw> | |
| [:SOURce <hw>]:DM:PSK:STATe</hw> | |
| [:SOURce <hw>]:FM:MODE</hw> | |
| [:SOURce <hw>]:FM:RATio</hw> | |
| [:SOURce <hw>]:FM<ch>:SOURce</ch></hw> | |
| [:SOURce <hw>]:FM<ch>:STATe</ch></hw> | |
| [:SOURce <hw>]:FM<ch>[:DEViation]</ch></hw> | |
| [:SOURce <hw>]:FREQuency:CENTer</hw> | |
| [:SOURce <hw>]:FREQuency:MANual</hw> | |
| [:SOURce <hw>]:FREQuency:MODE</hw> | |
| [:SOURce <hw>]:FREQuency:MULTiplier</hw> | |
| [:SOURce <hw>]:FREQuency:PLL:MODE</hw> | |
| [:SOURce <hw>]:FREQuency:SPAN</hw> | |
| [:SOURce <hw>]:FREQuency:STARt</hw> | |
| [:SOURce <hw>]:FREQuency:STEP:MODE</hw> | |
| [:SOURce <hw>]:FREQuency:STEP[:INCRement]</hw> | |
| I:SOURce <hw>]: REQuency:STOP</hw> | |
| | |

| [:SOURce <hw>]:FREQuency[:CW FIXed]</hw> | 473 |
|--|-----|
| [:SOURce <hw>]:FREQuency[:CW FIXed]:RCL</hw> | 474 |
| [:SOURce <hw>]:INPut:MODext:COUPling<ch></ch></hw> | 480 |
| [:SOURce <hw>]:INPut:MODext:IMPedance<ch></ch></hw> | 480 |
| [:SOURce <hw>]:LFOutput:FREQuency:MANual</hw> | 484 |
| [:SOURce <hw>]:LFOutput:FREQuency:MODE</hw> | 484 |
| [:SOURce <hw>]:LFOutput:FREQuency:STARt</hw> | 485 |
| [:SOURce <hw>]:LFOutput:FREQuency:STOP</hw> | 486 |
| [:SOURce <hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VOLTage</ch></hw> | 497 |
| [:SOURce <hw>]:LFOutput:SWEep:VOLTage:MARKer<ch>:VSTate</ch></hw> | 497 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:DWELI</hw> | 487 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:EXECute</hw> | 487 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:MODE</hw> | 490 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:POINts</hw> | 491 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:RETRace</hw> | 492 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:RUNNing?</hw> | |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:SHAPe</hw> | 493 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:SPACing</hw> | 493 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:STEP:LOGarithmic</hw> | 495 |
| [:SOURce <hw>]:LFOutput:SWEep[:FREQuency]:STEP[:LINear]</hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe</ch></hw> | 501 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:DCYCle</ch></hw> | 502 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:PERiod</ch></hw> | 502 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:PULSe:WIDTh</ch></hw> | 502 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:FALL</ch></hw> | 503 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:HIGH</ch></hw> | 503 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:PERiod</ch></hw> | 503 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRAPeze:RISE</ch></hw> | |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRlangle:PERiod</ch></hw> | 504 |
| [:SOURce <hw>]:LFOutput<ch>:SHAPe:TRlangle:RISE</ch></hw> | 504 |
| [:SOURce <hw>]:LIST:CATalog?</hw> | 509 |
| [:SOURce <hw>]:LIST:DELete</hw> | 509 |
| [:SOURce <hw>]:LIST:DELete:ALL</hw> | 510 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:CATalog?</hw> | 510 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:EXTension</hw> | 511 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:SELect</hw> | 511 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:SEParator:COLumn</hw> | 512 |
| [:SOURce <hw>]:LIST:DEXChange:AFILe:SEParator:DECimal</hw> | 512 |
| [:SOURce <hw>]:LIST:DEXChange:EXECute</hw> | 513 |
| [:SOURce <hw>]:LIST:DEXChange:MODE</hw> | 513 |
| [:SOURce <hw>]:LIST:DEXChange:SELect</hw> | 513 |
| [:SOURce <hw>]:LIST:DWELI</hw> | 514 |
| [:SOURce <hw>]:LIST:FREE?</hw> | 514 |
| [:SOURce <hw>]:LIST:FREQuency</hw> | 514 |
| [:SOURce <hw>]:LIST:FREQuency:POINts?</hw> | 515 |
| [:SOURce <hw>]:LIST:INDex</hw> | 515 |
| [:SOURce <hw>]:LIST:INDex:STARt</hw> | |
| [:SOURce <hw>]:LIST:INDex:STOP</hw> | |
| [:SOURce <hw>]:LIST:LEARn</hw> | |
| [:SOURce <hw>1:LIST:MODE</hw> | |

| [:SOURce <hw>]:LIST:POWer</hw> | 517 |
|---|-----|
| [:SOURce <hw>]:LIST:POWer:POINts?</hw> | 518 |
| [:SOURce <hw>]:LIST:RESet</hw> | 518 |
| [:SOURce <hw>]:LIST:SELect</hw> | 519 |
| [:SOURce <hw>]:LIST:TRIGger:EXECute</hw> | 519 |
| [:SOURce <hw>]:LIST:TRIGger:SOURce</hw> | 519 |
| [:SOURce <hw>]:MODulation[:ALL][:STATe]</hw> | 520 |
| [:SOURce <hw>]:NOISe:BANDwidth BWIDth</hw> | |
| [:SOURce <hw>]:NOISe:BWIDth:STATe</hw> | |
| [:SOURce <hw>]:NOISe:DISTribution</hw> | |
| [:SOURce <hw>]:NOISe:LEVel:RELative?</hw> | |
| [:SOURce <hw>]:NOISe:LEVel[:ABSolute]?</hw> | 522 |
| [:SOURce <hw>]:PGENerator:OUTPut:POLarity</hw> | 522 |
| [:SOURce <hw>]:PGENerator:OUTPut[:STATe]</hw> | 523 |
| [:SOURce <hw>]:PHASe</hw> | |
| [:SOURce <hw>]:PHASe:REFerence</hw> | |
| [:SOURce <hw>]:PM:MODE</hw> | |
| [:SOURce <hw>]:PM:RATio</hw> | |
| [:SOURce <hw>]:PM<ch>:SOURce</ch></hw> | |
| [:SOURce <hw>]:PM<ch>:STATe</ch></hw> | |
| [:SOURce <hw>]:POWer:ALC:PMETer:TYPE</hw> | |
| [:SOURce <hw>]:POWer:ALC:REFerence</hw> | |
| [:SOURce <hw>]:POWer:ALC:SONCe</hw> | |
| [:SOURce <hw>]:POWer:ALC:SOURce</hw> | |
| [:SOURce <hw>]:POWer:ALC[:STATe]</hw> | |
| [:SOURce <hw>]:POWer:ATTenuation:RFOFf:MODE</hw> | |
| [:SOURce <hw>]:POWer:EMF:STATe</hw> | |
| [:SOURce <hw>]:POWer:LIMit[:AMPLitude]</hw> | |
| [:SOURce <hw>]:POWer:MANual</hw> | |
| [:SOURce <hw>]:POWer:MODE</hw> | |
| [:SOURce <hw>]:POWer:POWer</hw> | |
| [:SOURce <hw>]:POWer:RESolution</hw> | |
| [:SOURce <hw>]:POWer:SPC:CRANge</hw> | |
| [:SOURce <hw>]:POWer:SPC:DELay</hw> | |
| [:SOURce <hw>]:POWer:SPC:PEAK</hw> | |
| [:SOURce <hw>]:POWer:SPC:SELect</hw> | |
| [:SOURce <hw>]:POWer:SPC:STATe</hw> | |
| [:SOURce <hw>]:POWer:SPC:TARGet</hw> | |
| [:SOURce <hw>]:POWer:STARt</hw> | |
| [:SOURce <hw>]:POWer:STEP:MODE</hw> | |
| [:SOURce <hw>]:POWer:STEP[:INCRement]</hw> | |
| [:SOURce <hw>]:POWer:STOP</hw> | |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate]:OFFSet</hw> | |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate]:RCL</hw> | |
| [:SOURce <hw>]:POWer[:LEVel][:IMMediate][:AMPLitude]</hw> | |
| [:SOURce <hw>]:PULM:DELay</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:DELay</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:STATe</hw> | |
| [:SOURce <hw>]:PULM:DOUBle:WIDTh</hw> | |
| [:SOURce <hw>]:PULM:MODE</hw> | 542 |

| [:SOURce <hw>]:PULM:OUTPut:VIDeo:POLarity</hw> | 542 |
|--|-----|
| [:SOURce <hw>]:PULM:PERiod</hw> | 543 |
| [:SOURce <hw>]:PULM:POLarity</hw> | 543 |
| [:SOURce <hw>]:PULM:SOURce</hw> | 544 |
| [:SOURce <hw>]:PULM:STATe</hw> | 544 |
| [:SOURce <hw>]:PULM:SYNC</hw> | 544 |
| [:SOURce <hw>]:PULM:TRAin:CATalog?</hw> | 545 |
| [:SOURce <hw>]:PULM:TRAin:DELete</hw> | 545 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:CATalog?</hw> | 551 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:EXTension</hw> | 551 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SELect</hw> | 552 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:COLumn</hw> | 552 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:AFILe:SEParator:DECimal</hw> | 553 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:EXECute</hw> | 553 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:MODE</hw> | 554 |
| [:SOURce <hw>]:PULM:TRAin:DEXChange:SELect</hw> | 554 |
| [:SOURce <hw>]:PULM:TRAin:OFFTime</hw> | 546 |
| [:SOURce <hw>]:PULM:TRAin:OFFTime:POINts?</hw> | 546 |
| [:SOURce <hw>]:PULM:TRAin:ONTime</hw> | 547 |
| [:SOURce <hw>]:PULM:TRAin:ONTime:POINts?</hw> | 547 |
| [:SOURce <hw>]:PULM:TRAin:REPetition</hw> | 548 |
| [:SOURce <hw>]:PULM:TRAin:REPetition:POINts?</hw> | 548 |
| [:SOURce <hw>]:PULM:TRAin:SELect</hw> | 549 |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:GATE:POLarity</hw> | 549 |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:IMPedance</hw> | 549 |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:LEVel</hw> | 550 |
| [:SOURce <hw>]:PULM:TRIGger:EXTernal:SLOPe</hw> | 550 |
| [:SOURce <hw>]:PULM:TRIGger:MODE</hw> | 550 |
| [:SOURce <hw>]:PULM:WIDTh</hw> | 555 |
| [:SOURce <hw>]:SWEep:MARKer:OUTPut:POLarity</hw> | 568 |
| [:SOURce <hw>]:SWEep:POWer:AMODe</hw> | 568 |
| [:SOURce <hw>]:SWEep:POWer:DWELI</hw> | 569 |
| [:SOURce <hw>]:SWEep:POWer:EXECute</hw> | 569 |
| [:SOURce <hw>]:SWEep:POWer:MARKer:ACTive</hw> | 569 |
| [:SOURce <hw>]:SWEep:POWer:MARKer:AOFF</hw> | |
| [:SOURce <hw>]:SWEep:POWer:MARKer<ch>:POWer</ch></hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:MARKer<ch>:STATe</ch></hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:MODE</hw> | 570 |
| [:SOURce <hw>]:SWEep:POWer:POINts</hw> | 571 |
| [:SOURce <hw>]:SWEep:POWer:RETRace</hw> | 572 |
| [:SOURce <hw>]:SWEep:POWer:RUNNing?</hw> | 572 |
| [:SOURce <hw>]:SWEep:POWer:SHAPe</hw> | 572 |
| [:SOURce <hw>]:SWEep:POWer:SPACing:MODE?</hw> | 573 |
| [:SOURce <hw>]:SWEep:POWer:STEP[:LOGarithmic]</hw> | 573 |
| [:SOURce <hw>]:SWEep:RESet[:ALL]</hw> | 574 |
| [:SOURce <hw>]:SWEep[:FREQuency]:DWELI</hw> | 560 |
| [:SOURce <hw>]:SWEep[:FREQuency]:EXECute</hw> | 561 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:ACTive</hw> | 561 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:AMPLitude</hw> | 561 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:AOFF</hw> | 562 |

| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer:XFER</hw> | 563 |
|---|-----|
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:FREQuency</ch></hw> | 562 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:FSTate</ch></hw> | 562 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MARKer<ch>:PSTate</ch></hw> | 562 |
| [:SOURce <hw>]:SWEep[:FREQuency]:MODE</hw> | 563 |
| [:SOURce <hw>]:SWEep[:FREQuency]:POINts</hw> | 564 |
| [:SOURce <hw>]:SWEep[:FREQuency]:RETRace</hw> | 564 |
| [:SOURce <hw>]:SWEep[:FREQuency]:RUNNing?</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:SHAPe</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:SPACing</hw> | 565 |
| [:SOURce <hw>]:SWEep[:FREQuency]:STEP:LOGarithmic</hw> | 567 |
| [:SOURce <hw>]:SWEep[:FREQuency]:STEP[:LINear]</hw> | 566 |
| [:SOURce <hw>]:SWEep[:FREQuency]:TIME</hw> | 568 |
| *CLS | 354 |
| *ESE | 354 |
| *ESR? | 354 |
| *IDN? | 355 |
| *IST? | 355 |
| *OPC | 355 |
| *OPT? | 355 |
| *PRE | 356 |
| *PSC | 356 |
| *RCL | 356 |
| *RST | 356 |
| *SAV | 357 |
| *SRE | 357 |
| *STB? | 357 |
| *TRG | 357 |
| *TST? | 357 |
| *WAI | 358 |
| SENSe <ch>[:POWer]:SNUMber?</ch> | 404 |
| SENSe <ch>[:POWer]:STATus[:DEVice]?</ch> | 405 |
| SENSe <ch>[:POWer]:SVERsion?</ch> | 405 |
| SENSe <ch>[:POWerl:TYPE?</ch> | 438 |

Index

| Symbols | | AM Sensitivity | |
|---|---------|------------------------------------|----------|
| · ODO | 0.40 | AM State | 259 |
| OPC | | Amplitude | |
| OPC? | | Annotation (setup security) | 132 |
| 'RST | | LF Frequency Marker | |
| WAI | | RF frequency marker | |
| var directory | | Amplitude Marker | |
| RGTL | | RF frequency marker | |
| RGTR | | Analyzer Type | 122 |
| RLLO | | Annotation | 400 |
| 50 - Extern reference out of range or disconnected | | Amplitude (security) | |
| 140 - This modulation forces other modulations off | | Frequency (security) | 132 |
| 180 - Adjustment failed | | Aperture time | 20.4 |
| 182 - Adjustment data missing | | Power sensors | |
| 183 - Adjustment data invalid | | Application cards | |
| 200 - Cannot access hardware | | Application notes | |
| 201 - Hardware revision out of date
202 - Cannot access the EEPROM | | Architecture of the instrument | |
| 203 - Invalid EEPROM data | | Arrow keys | 22 |
| 204 - river initialization failed | 610 | ASCII file import/export List Mode | 170 |
| 241 - No current list | | | |
| 242 - Unknown list type specified | | ASK Source | , |
| 160 - Cannot open file | | ASK State | • |
| 461 - Cannot write file | | Assemblies displayATN | |
| 462 - Cannot read file | | Attention | |
| 463 - Filename missing | | Attenuator | |
| 164 - Invalid filename extension | | Attenuator settings | |
| 165 - File contains invalid data | | RF OFF mode | 520 |
| 105 - File Contains invalid data | 011 | Attenuator Settings | |
| Α | | Attenuation | 178 306 |
| | | Fixed Range (PEP) in | |
| Abort button | 90 | Mode | |
| Abort calculation | | RF OFF Mode | |
| AC supply | | AttFixed | |
| Accept | | Auto once | |
| Security Settings | 134 | Power Sensors | 204 |
| Access denied | | Auto Once - Power Sensors | |
| Active Marker2 | 88, 297 | Auto Scale | |
| RF frequency marker | 172 | Power Analysis | 223 |
| Active Marker - RF Level Marker 1 | | Auto Set | |
| Active Marker -LF Level Sweep | 497 | Power Sensors | 241 |
| Address mode | | Auto-negotiation | |
| Network settings | 119 | see Autonegotiation | 39 |
| Adjust All | 106 | Automatic Naming Hardcopy | |
| Adjust Level | 106 | Power Analysis | 243 |
| Adjust modulation LF generator | 106 | Autonegotiation | |
| Adjust Synthesis | 106 | Failed | 611 |
| Adjust Synthesis Extension | 106 | Failure | 39 |
| Adjustment active | | Auxiliary I/O Settings | |
| Reference oscillator | 161 | Avahi | |
| Adjustment Data | 185 | LAN Services | 131 |
| Adjustment frequency | | Average | |
| Reference oscillator | 161 | Power Analysis | 221 |
| Adjustments | | • | |
| All | | В | |
| ALC (automatic level control) | | | |
| ALC Auto | | Background color | |
| ALC On 1 | - , | Power Analysis | 224 |
| ALC S&H | | Bandwidth | |
| ALC Table | 607 | Chirp modulation | |
| AM | 0=- | Bandwidth - Noise | |
| Source | | Bandwidth – External Inputs | 257, 483 |
| AM Denth | 260 | | |

| Baudrate | | SCPI confirmed | |
|---|------|---|--------|
| RS232 interface | 124 | Sequential | 340 |
| Blank polarity | 122 | Syntax elements | 338 |
| Blank width | 122 | White space | 338 |
| Bluetooth | | Common commands | |
| RS232 Interface | 123 | Syntax | 332 |
| Bluetooth Pin | | Compression ratio | |
| Boolean parameters | | Chirp Modulation | 275 |
| Brochures | | Computer name | |
| Browser settings | 17 | Changing | 11 |
| LXI | E4 | see hostname | 446 |
| | | | |
| BUSY | 606 | use instead of IP address | |
| • | | CONDition | 346 |
| C | | Config | |
| One and the state of | | Power Analysis | 214 |
| Case-sensitivity | 000 | Configurable Main PLL Bandwidth | 155 |
| SCPI | 333 | Confirm user password | |
| Catch range | | Setup (security) | 130 |
| NRP-Z level control | | Connection fault | |
| NRP-Z power control | 534 | 169.254.*.* | 611 |
| Center Freq | 167 | Connection to an external controller | 41 |
| Change password | | Connector | |
| Setup (security) | 130 | AUX I/O | 25 |
| Check front panel | 114 | BLANK | |
| Performing | 115 | EFC | |
| Settings | | EXT 1 | |
| Chirp Deviation | | EXT 2 | , |
| Chirp modulation | | | , |
| Bandwidth | | EXT ALC | |
| | | GPIB | |
| Compression ratio Direction | | IEC/IEEE | |
| | | LAN | |
| Ext trigger input slope | | LF | |
| External impedance | | MARKER | |
| Gate input polarity | | PULSE IN | 28 |
| Gated signal | | PULSE OUT | 28 |
| Pulse period | | REF IN | 27 |
| Pulse width | | REF OUT | 27 |
| State | | RF | 24 |
| Trigger level | 275 | RF OUT | 27 |
| Trigger mode | 275 | SENSOR | 23. 25 |
| Chirp period | 274 | STOP | 27 |
| Clear status | | SYNC | |
| Remote | 354 | TRIGGER | |
| Closed loop power control | | USB | |
| see NRP-Z level control | 205 | USB type A | |
| CLPC | = 00 | USB type B | |
| see NRP-Z level control | 205 | | |
| Colon | | USER 1 | |
| Column Separator Import/Export | 550 | USER 2 | |
| · · · · | 205 | USER 3 | |
| Pulse Train data | | V/GHz | |
| Column Separator Import/Export - User Correction da | | VIDEO | |
| Comma | 338 | X-AXIS | 28 |
| Command sequence | | Z-AXIS | 28 |
| recommendation | 351 | Continue Adjustment on error | 106 |
| Remote | 358 | Control bus | 613 |
| Commands | 311 | Controller, external | 41 |
| Colon | 338 | Copy | |
| Comma | 338 | Several files | 147 |
| Command line structure | 338 | Copy instrument settings | |
| Common | 311 | Count | |
| Double dagger | | LF Level Sweep | 201 |
| GBIP, addressed | | · | |
| GBIP, universal | | Counter | |
| Instrument control | | Coupling Mode | |
| Overlapping | | Coupling mode - Modulation | 251 |
| | | Create New Directory | |
| Question mark | | CSV Decimal Point Hardcopy - Power Analysis | |
| Quotation mark | | CSV Header Hardcopy - Power Analysis | 245 |

| CSV Orientation Hardcopy - Power Analysis | | Display priority | |
|--|---------------|--|--------|
| CSV Separator Hardcopy - Power Analysis | 245 | Power sensors | 201 |
| Current Freq | | DISPlay subsystem | 364 |
| LF Sweep | 294 | Distribution - Noise | 279 |
| Current Freq (LF Sweep) | | DNS server | |
| Current Freq (RF Sweep) | | Network settings | 120 |
| Current Index | | DNS suffix | |
| List Mode | 175 | Network settings | 110 |
| | | Documentation Overview | |
| Current Sensors | | | |
| Current Sensors | | Double dagger | |
| Cursor keys | | Double Pulse | 298 |
| Cut | 146 | Double pulse delay | |
| _ | | Pulse generator | 299 |
| D | | Double pulse width | |
| | | Pulse generator | 298 |
| Data sheet | | DOWN | 336 |
| Data Valid | 613 | Drop out Time - Power Sensors | 24 |
| Date | | Dwell time | |
| Setup | 116 | RF sweep | 170 |
| DAV | 613 | Dwell Time 175, 191 | |
| Day Hardcopy File Name | | LF Sweep | |
| Power Analysis | 243 | List Mode | |
| DC Offset | 2 10 | | |
| LF output | 280 | Dwell Time - Level Sweep | 490 |
| DCL | | - | |
| | | E | |
| Deactivate RF output | 100 | | |
| Decimal Point Import/Export | | Edit | |
| Pulse Train data | | Pulse Train | |
| Decimal Point Import/Export - List Mode data | | Edit Marker170 |), 286 |
| Decimal Point Import/Export - User Correction of | data 251 | RF Level Sweep | |
| DEF | 336 | Edit Pulse Train Data | 302 |
| Default gateway | | Edit User Correction Data | 249 |
| Network settings | 119 | EFC | |
| Default instrument settings | .34. 103. 359 | Electronic frequency control | 161 |
| Default values | , , | Reference oscillator | |
| Remote | 356 | EFC - Reference Oscillator | |
| Define Reference - Power Analysis | | EFC (Electronic Frequency Control) | |
| Delay | | Electrostatic discharge | |
| Double pulse | 200 | <u> </u> | |
| • | | EMF - Level display | |
| Pulse generator | 298 | EMI suppression | 30 |
| Delay time | | Emulation | |
| NRP-Z level control | | IDN string | |
| NRP-Z power control | 534 | Language | |
| Delete Hardcopy Files | | Mode | |
| Power Analysis | 243 | Set IDN and OPT to default | 126 |
| Delete instrument settings | 146, 383 | Enable | |
| Delta Phase | 157 | LAN interface | 131 |
| Depth – ASK | 268. 466 | ENABle | 346 |
| Destination - Hardcopy | 137 | Enable registers | |
| Destination Import/Export | | Remote | 356 |
| Pulse Train data | 305 | Enter License Key | |
| User Correction data | | EOI | |
| | | | |
| Destination Import/Export - List Mode data | | Error log | |
| Deviation – FSK | · · | Error messages | |
| Deviation – PSK | · · | Adjustment data invalid (183) | |
| Device ID | | Adjustment data missing (182) | |
| Device-specific commands | | Adjustment failed (180) | |
| Device-specific error messages | 609 | Cannot access hardware (200) | |
| DHCP | 40 | Cannot access the EEPROM (202) | 610 |
| Digital modulation signal | 261 | Cannot open file (460) | 611 |
| Direction | | Cannot read file (462) | 611 |
| Chirp modulation | 273 | Cannot write file (461) | |
| Directory Hardcopy | =. v | Driver initialization failed (204) | |
| Power Analysis | 243 | Extern reference out of range or disconnected (50) | |
| | | | |
| Display | | File contains invalid data (465) | |
| Lock (security) | 132 | Filename missing (463) | |
| | | Hardware revision out of date (201) | 61(|

| Invalid EEPROM data (203) | 610 | File list | 380 |
|---|------------|-------------------------------|-------------------------|
| Invalid filename extension (464) | 611 | File menu | |
| No current list (241) | 610 | Save/Recall | 142 |
| This modulation forces other modulations of | | File Name - Hardcopy | 137 |
| Unknown list type specified (242) | 610 | File setup - Hardcopy | 138 |
| Error Messages | | File type selection | |
| device-specific | | Fill Table | |
| SCPI | | List Mode | 176 |
| Error messages - display list | | Fill Table - List mode | |
| Error queue | | Fill Table From | |
| Error queue query5 | | Fill Table Range | |
| Error queues | 10,000,001 | Filter | 101, 202 |
| recommendations | 352 | Power Sensors | 203 |
| ESD | | Filter Length | 202 |
| ESE (event status enable register) | | Power Sensors | 201 |
| ` , | | | |
| ESR (a) (and atotive register) | | Filter Length - Power Sensors | |
| ESR (event status register) | | Firmware version | |
| EVENt | 346 | Floating licences | |
| Event status enable register (ESE) | | FM Deviation | |
| Remote | | FM Mode | |
| Event status register (ESR) | | FM Source | |
| Remote | | FM State | |
| Exclude Frequency | 144 | FM-DC mode | |
| Exclude Level | 144 | FREQ OFFSET | |
| Execute Single | | Frequency | 182 |
| List Mode | 174 | Annotation (setup security) | 132 |
| Execute single sweep | | LF Generator | 260, 263, 266, 277, 289 |
| Frequency sweep | 167 | List Mode | |
| Execute Single Sweep | | Multiplier | 154 |
| Level Sweep | 190 | PM | |
| LF Level Sweep | | Power sensors | |
| LF Sweep | | RF frequency marker | |
| Execute Single Sweep - LF Sweep | | RF signal | 151 |
| Expiration date of option | | Set Frequency | |
| Export Deactivation Response | | Frequency - Modulation chirp | |
| EXT REF | | Frequency - RF sweep | |
| Ext trigger input slope | | Frequency (status bar) | 107 |
| Chirp Modulation | 275 | RF signal | 150 |
| • | | | 132 |
| EXT TUNE input | 137 | Frequency dialog RF signal | 150 |
| Extension Import/Export Pulse Train data | 205 | | |
| | | Frequency display | / / |
| Extension Import/Export - List Mode data | | Frequency marker | 400 400 |
| Extension Import/Export - User Correction data . | 251 | LF generator | 489, 490 |
| External frequency | 100 | Frequency marker active | |
| Reference oscillator | 160 | LF generator | 488 |
| External impedance | | Frequency marker all off | |
| Chirp Modulation | | LF generator | 489 |
| Pulse generator | | Frequency marker state | |
| External Impedance - Pulse Modulation | 276 | LF generator | 489 |
| External input impedance | 301 | Front panel key emulation | 99 |
| External Level Control | | Front panel test | |
| Power Meter Type | 197 | Performing | 115 |
| Reference Voltage | 197, 527 | FSK Source | 268 |
| Source | 196, 528 | FSK State | 268, 468 |
| External modulation signal | 259 | FTP | • |
| FM | | How to | 147 |
| фМ | 264 | LAN Services | |
| External modulation signal – Digital Modulation . | | Fullscreen view | |
| External Reference Frequency | | Power Analysis | 224 |
| External tuning - Reference frequency | | Fuses | |
| _xterrial turning - reference frequency | 137 | 1 uses | |
| F | | G | |
| | | - | |
| Factory Preset | 135 | Gate | |
| Failure | | Average Power | 227 |
| Network connection | 39 | Peak Power | |
| File - Hardcopy dialog | | | |
| | | | |

| Gate input polarity | | Impedance Trigger/Gate Signal - Pulse | |
|--|------------------------|---------------------------------------|---|
| Chirp Modulation | | Import License Key | 110 |
| Gate Input Polarity - Chrip Modulation | 275 | Import/Export | |
| Gate Start | | List Mode data | 180 |
| Power Analysis | 228 | Pulse Train data | 304, 305 |
| Gate State | | User Correction data | 250, 252 |
| Power Analysis | 227. 392 | Import/Export - List Mode data | |
| Gate Stop | , | Indication | |
| Power Analysis | 228 | Indication - Trace power analysis | |
| Gate view | 220 | INF | |
| | 204 | | |
| Power Analysis | 224 | INFO key | |
| Gated | | Input | |
| Pulse trigger input | 301 | PULSE EXT | 272 |
| Gated signal | | Input connector | 23, 24, 27 |
| Chirp Modulation | 275 | Installed Assembly | 107 |
| Pulse modulation | | Instrument Config | |
| Gateway | | Instrument Emulations | |
| GET | | Instrument messages | |
| | | <u> </u> | |
| Getting started | 59 | Instrument settings | 440 050 004 |
| Goto local | | Recall | |
| Remote channel settings | | Save | · · · |
| GPIB | 124 | Instrument Trigger17 | 0, 177, 192, 286, 295 |
| bus address | 123 | Interface | |
| Characteristics | 316 | functions (GPIB bus) | 614 |
| interface messages | | Interface Clear | |
| Remote control interface | | Interface messages | |
| | | Interfaces | 010, 014 |
| GPIB address | 317 | | 240 |
| Grid | 200 | GPIB | |
| Power Analysis | | USB | 314 |
| GTL | 317 | Internal adjustments | |
| | | Setup | 104 |
| Н | | Interrupt | 349 |
| | | IP address | |
| Hardcopy - Destination | 137, 370 | Changing | 40 |
| Hardcopy - File setup | 138 | Network settings | |
| Hardcopy Device Size | | | |
| Power Analysis | | Not recognized | |
| • | | IP address mode | |
| Hardcopy dialog - File | 137 | IST | 344 |
| Hardcopy File Name | | IST flag | |
| Power Analysis | | Remote | 355 |
| Hardcopy Format | 375 | | |
| Hardware Config | 107 | K | |
| Hardware options | 108 | | |
| HISLIP | | Key | |
| Protocol | 313 | Arrow key | 23 |
| Resource string | | BACKSPACE | |
| Host name | | CLOSE | |
| | 40 44 | | |
| see Computer name | 40, 41 | Cursor key | |
| Hostname | | DIAGRAM | |
| Network settings | | ENTER | 22 |
| see Computer name | 40, 41 | ESC | 20 |
| HTTP | | FILE | 20, 141 |
| LAN Services | 131 | FREQ | 19 |
| Hysteresis | | HCOPY | |
| Power Sensors | 240 | HELP | |
| 1 Ower Sensors | 240 | HIDE | • |
| • | | | |
| | | INFO | |
| 11 00 0 | | INSERT | 22 |
| Identification | | LEVEL | 20 |
| Emulation mode | | LOCAL | 18 |
| Remote | 355 | MENU | 20 |
| | 125 | MOD ON/OFF | 20 256 |
| Identification mode | 120 | | |
| | 123 | ON/OFF | 20 |
| IDN string | | ON/OFF | |
| IDN string Emulation | 126 | PRESET | 18, 34, 103 |
| IDN string Emulation Emulation mode | 126
126 | PRESETREARR | 18, 34, 103
21 |
| IDN string Emulation | 126
126
316, 613 | PRESET | 18, 34, 103
21
20 |

| TOGGLE | 20 | LF Frequency Marker | | |
|--------------------------|------------|----------------------------------|----------------|----------|
| WINBAR | 21 | Active Marker | | 288 |
| Key - HELP | | Amplitude | | |
| Key - LOCAL | | Amplitude Marker | | |
| • | | | | |
| Key combinations | 97 | Marker Polarity | | |
| Keyboard | | State | | 287 |
| Layout | 121 | LF frequency sweep | | |
| Keyboard Language | 376 | Retrace | | 285 |
| Keypad | | LF Gen Shape | | |
| Keywords | ······ = · | LF Gen Voltage | | |
| see Mnemonics | 222 | S . | | 200 |
| see whemonics | 332 | LF Generator | 000 000 000 | 077 000 |
| | | Frequency | | |
| L | | Period (Pulse Shape) | 261, 264, | 267, 290 |
| | | Period (Sine Shape) | 261, 264, 266, | 278, 290 |
| LAN | | Period (Trapezoid Shape) | 261. 264. | 267. 290 |
| Configuration | 38 | Period (Triangle Shape) | | |
| Interface | 311 | Pulse Duty Cycle | | |
| IP address | | | | |
| Remote control interface | | Pulse Period | | |
| | | Pulse Width | | |
| VISA | | Shape | | |
| VXI protocol | 313 | Trapezoid Fall | | 279 |
| LAN connection | | Trapezoid High | | 279 |
| Not working | 39 | Trapezoid Period | | |
| LAN interface | | | | |
| Avahi | 121 | Trapezoid Rise | | |
| | | Triangle Period | | |
| enable | | Triangle Rise | | 278 |
| FTP | 131 | LF Level Marker - Level Sweep | | 297, 497 |
| HTTP | 131 | LF Level Marker State - Level Sw | | |
| LAN over SCPI | 131 | LF Level Sweep | | |
| SMB (Samba) | | Retrace | | 205 |
| SSH | | | | |
| | | LF Level Sweep - Active Marker . | | |
| VNC | 131 | LF output | | 288 |
| LAN Interface | | LF Output Source | | 289, 487 |
| Services | 131 | LF output State | | 289 |
| Setup | 131 | LF Source - Level Sweep | | |
| LAN Status - LXI | 126 | LF sweep | | |
| | 120 | • | | 005 |
| Language | 405 | Step lin | | |
| Emulation | | Step log | | |
| Language Keyboard | 3/6 | Step width | | 285 |
| Layout | | Sweep step count | | 285 |
| Keyboard | 121 | LF Sweep | | |
| Learn List Mode Data | | LFSweep | | |
| Level | | Licence for software option | | |
| limit 1 | | • | | |
| | , | License Key | | 109 |
| Power sensors | | Limit | | |
| RF output | 183 | Level | | 184, 208 |
| Level - RF Level Marker | 570 | Linux | | 37 |
| Level - Step width | 185 | Linux controller | | |
| Level (Avg.) | | | | |
| (9 / | 200 | List mode | | |
| Power sensors | | manual processing of lists | | |
| Level control | | List Mode Data | | 176 |
| Level display | 77 | List Range In | | 177 |
| Level display EMF | 186 | ListMode | | 607 |
| Level limit | | LLO | | |
| RF level1 | 84 208 | | | |
| | , | Load instrument settings | | |
| Level offset | | LOC-LLO | | |
| Power Analysis | | Local to remote switchover | | 318, 319 |
| Power Sensors | | Lock | | |
| State (power sensors) | 202 | Display (setup security) | | 132 |
| LEVEL OFFSET | | LXI | | |
| Level offset state | | Browser interface | | |
| | 220 | | | |
| Power Analysis | | Browser settings | | |
| Level Sweep | | Configuration | | 49 |
| Sweep Step Count | 191 | LAN configuration | | |
| Level user correction | 247 | Ping | | |
| LevelSweep | | Remote trace (SCPI) | | 57 |
| | | | | |
| | | Web Control | | 55 |

| M | | FM | |
|---|--|---|-----------------|
| NA deles | 400 | PM | |
| Mac address | 120 | Pulse modulation | |
| Main PLL bandwidth | 454 | φM | |
| RF frequency | | Modulation chirp - repetition frequency | |
| Maintenance | 104 | Modulation depth - AM | 260 |
| Malfunctions | 252 | Modulation deviation | 004 |
| reacting | | FM | |
| Manual Remote Control | 41 | фМ | |
| Marker | 007 | Modulation deviation - Chirp | |
| LF Frequency Marker | | Monitoring - LF Output | |
| Power Analysis | · | Multi transmitter measurements | 194 |
| RF frequency marker | | Multiple files | |
| Marker - RF Level Marker | 193 | Сору | 14 |
| Marker indication | | Multiplier | |
| Power Analysis | | Frequency | 154 |
| Marker Polarity | 121, 172, 193 | •• | |
| Marker view | | N | |
| Power Analysis | | | |
| Mathematics - Power Analysis | 218 | NAN | |
| Max | | Navigation keys | |
| Power Analysis | 220 | NDAC | 613 |
| MAX | 336 | Network | |
| Max Separate Frequency - Power Analysis | 231 | Connection fails | 61 ⁻ |
| Maximal deviation - Chirp modulation | 274 | Network connection | |
| Maximum deviation | 266 | Error | 39 |
| FM | | Network settings | 11 |
| Measured level | | Address mode | 119 |
| NRP-Z level control | 207 | Default gateway | |
| Menu structure | | DNS server | |
| Access denied | 82 | DNS suffix | |
| Header | ······································ | Hostname | |
| | | IP address | |
| Menu area | 02 | Status | |
| Messages | 044 | Subnet mask | |
| Commands | | | |
| Instrument | | Workgroup | |
| Instrument responses | | Network status | 110 |
| Interface | 310 | New password | 40 |
| Min _ | | Setup (security) | 130 |
| Power Analysis | | New user password | 40 |
| MIN | | Setup (security) | |
| Min Separate Frequency - Power Analysis | 230 | NINF | |
| Min/max Y scale | | No-load voltage (EMF) | 180 |
| Power Analysis | 223 | Noise | |
| Mnemonics | | Bandwidth | |
| Optional | 334 | Distribution | |
| MOD OFF | 605 | Level Density | |
| MOD ON/OFF Key | 256 | Level Noise | 280 |
| Mode | | Noise Level - Noise | 279, 280 |
| Emulation | 125 | Noise signal | 520 |
| FM | 263 | NRFD | 613 |
| Level Sweep | | NRP-Z Info | 110 |
| LF Gen | 281. 291 | NRP-Z level control | 20 |
| LF sweep | | catch range | 208 |
| LF Sweep | | delay time | 208 |
| List Mode | | measured level | |
| Pulse generator | | sensor | |
| фМ | | state | |
| · | | target level | |
| RF frequency sweep | | use peak power | |
| Mode - Level Sweep | 000 | NRP-Z power control | 200 |
| Mode Import/Export | 004 | catch range | EO. |
| Pulse Train data | | | |
| Mode Import/Export - List Mode data | | delay time | |
| Mode Import/Export - User Correction data | 251 | RF level limit | • |
| Modulation | | sensor | |
| AM | | state | |
| Chirp Modulation | 272 | target level | 53 |

| use peak power | 534 | SCPI | 335 |
|-------------------------------|---------------------------------------|---|-------------|
| use SParameter | 204, 208 | Special numeric values | 336 |
| NRP-Z power viewer | , | String | |
| use SParameter | 204 208 | Text | |
| NTRansition | · · · · · · · · · · · · · · · · · · · | Units | |
| Number of licences | | Parity | |
| Numeric values | 109 | RS232 interface | 124 |
| | 226 | | |
| Special | 330 | Part numbers | 107 |
| 0 | | Password | 400 |
| 0 | | Change (security password) | |
| | | Confirm (security password) | |
| Off time | | Confirm (user password (security)) | 130 |
| Pulse Train | 303 | New (security password) | 130 |
| Offset | | New (user password (security) | 130 |
| RF signal | 153 | Old (security password) | |
| Offset - Level | 184 | Paste | |
| Old password | | Path reset | |
| Setup (security) | 130 | PCI bus | |
| Old user password | | | 107 |
| Setup (security) | 130 | Period | 000 |
| On time | 130 | Pulse generator | 298 |
| | 000 | Period (Pulse Shape) | |
| Pulse Train | | LF Generator 261, 264 | ·, 267, 290 |
| Online help | | Period (Sine Shape) | |
| Working with | 92 | LF generator 261, 264, 266 | , 278, 290 |
| Online manual | 13 | Period (Trapezoid Shape) | , -, |
| Operating concept | 59 | LF Generator | 267 290 |
| Operating manual | | Period (Triangle Shape) | , 201, 200 |
| Operating system | | | 267 200 |
| Operation complete | | LF Generator | , 267, 290 |
| • | 255 | Permanent display | |
| Remote | | Power sensors | 201 |
| Operation hours | · · · · · · · · · · · · · · · · · · · | Phase | |
| OPT String | 126 | RF signal | 157 |
| Option | | PhiM | |
| Hardware | 108 | see φM | 264 |
| R&S SMF-B20 | 25 | Ping | |
| R&S SMF-B81 | 25, 27, 28 | LXI | 54 |
| R&S SMF-B83 | 26 | Point-to-point connection | |
| R&S SMF-K3 | | | 39 |
| R&S SMF-K23 | · · · · · · · · · · · · · · · · · · · | Polarity | 074 |
| | , | Pulse Modulation | |
| R&S SMF-K27 | | RF Frequency Marker | |
| Software | | RF Level Marker | |
| Option: expiration date | 109 | Polarity - Pulse Modulation | 522 |
| Options | | Polarity - RF Level Marker | 193 |
| Identification (remote) | 355 | Polarity – External Inputs | |
| Options - Hardcopy | 137 | Power | |
| Oscillator | | List Mode | 176 |
| Reference | 157 | | |
| Source (reference) | | Power Meter Type - External Level Control | |
| Output | 100 | Power Resolution - Level Settings | . 104, 533 |
| | 200 | Power sensors | |
| LF | | Aperture time | |
| Reference oscillator | | Auto once | 204 |
| Output connector | 23, 24, 25, 27 | Display priority | 201 |
| Output polarity | | Filter | |
| Pulse generator | 299 | Frequency | |
| Output queue | | Level | |
| OvenCold | | | |
| Overlapping commands | | Level (Avg.) | |
| • | | Level offset | |
| Preventing | 34∠ | NRP-Z level control | |
| D | | Permanent display | |
| P | | Power viewer | 199 |
| 5 | | Source | 202 |
| Packing | 603 | State | |
| Parallel poll register enable | | State (level offset) | |
| Remote | 356 | Type | |
| Parameters | | • • | |
| Block data | 338 | Unit | |
| Boolean | | Use default aperture time | |
| | | zero | 201, 207 |

| Power-On Count | 107 | Pulse period | |
|---------------------------------|-----|---|--------------------|
| Power-On Counter | 364 | Chirp modulation | 274 |
| Power-On State | 186 | Pulse generator | 298 |
| PPC | 317 | Pulse Period – LF Generator | 278 |
| PPE | 344 | Pulse Train | 298 |
| PPU | 316 | Pulse Generator | |
| Preset | | Pulse Train Data | |
| Preset - instrument settings | | Pulse trigger input slope | 275 30 |
| Preset instrument settings | | Pulse width | |
| Protection | | Chirp modulation | 27 |
| Protocol | 121 | Pulse generator | |
| VXI | 212 | Pulse Width – LF Generator | |
| | | | 210 |
| PSK Source | , | φМ | 000 |
| PSK State | , | Mode | |
| PTRansition | 346 | Modulation deviation | |
| Pulse data indication | | Ratio | |
| Power Analysis | 209 | Source | |
| Pulse Data Indication | | φM State | 26 |
| Average Power | 447 | | |
| Distal Power | 447 | Q | |
| Duty Cycle | 447 | | |
| Fall Time | | Queries | 311, 339 |
| Mesial Power | 447 | Status | 350 |
| Minimal Power | | Question mark | 338. 339 |
| Overshoot Falling Edge | | Questionable status register | |
| | | Quick Start Guide | |
| Overshoot Rising Edge | | Quotation mark | |
| Peak Power | | Quotation mark | |
| Proximal Power | | R | |
| Pulse Base Level | | K | |
| Pulse Off Time | 447 | D2C CM7 Fraguency Multiplier | 20. |
| Pulse Period | 447 | R&S SMZ Frequency Multiplier | |
| Pulse Start Time | 447 | Rackmounting | 3 |
| Pulse Stop Time | 447 | Ratio | |
| Pulse Top Level | | фМ | |
| Pulse Width | | Ratio – Amplitude Modulation | |
| Rise Time | | Recall instrument settings | 143, 144, 356, 384 |
| Pulse Data View | | Recall intermediate | 350 |
| Power Analysis | 224 | Recall Intermediate | 14 |
| Pulse delay | | Recommendations | |
| | 200 | remote control programming | 35 ⁻ |
| Pulse generator | 290 | Reference | |
| Pulse Duty Cycle – LF Generator | | Source (oscillator) | 160 |
| Pulse external impedance | | Reference frequency | |
| Pulse generator | | external | 550 |
| Delay | 298 | External | |
| Double pulse delay | 299 | | |
| Double pulse width | 298 | Reference oscillator | |
| External impedance | 301 | Adjustment active | |
| Mode | 298 | Adjustment frequency | |
| Output polarity | 299 | EFC | |
| Period | | External frequency | 160 |
| Pulse output state | | Output | 16 |
| Settings | | RF off state | 160 |
| | | Settings | 159 |
| Trigger mode | | Source | |
| Width | 290 | synchronization bandwidth | |
| Pulse Generator | 004 | Reference Voltage | |
| Pulse Train | 301 | External Level Control | 52 |
| Pulse mode | | | |
| Pulse generator | | Reference Voltage - External Level Contro | 1 |
| Pulse Mode | 298 | Registers | |
| Pulse modulation | 269 | Release notes | |
| repetition frequency | 298 | REM-LLO | 60 |
| Source | | Remote | |
| State | | Bluetooth | |
| Trigger mode | | RS232 | 123 |
| Pulse output state | | REMOTE | 606 |
| Pulse generator | 200 | Remote access | 4 |
| 1 4136 generator | ∠ฮฮ | | |

| Remote channel | | RF level limit | |
|---|-----------|-----------------------------------|---------------|
| GPIB address | 123 | NRP-Z power control | 184, 208 |
| Remote channel settings | 123 | RF Level Marker | , |
| Goto local | | Polarity | 568 |
| GPIB resource (VISA resource string) | | RF Level Marker - Polarity | |
| HISLIP resource (VISA resource string) | | RF Level Marker - State | |
| Network resource (Ethernet resource string) | | RF Level Sweep | |
| | | • | 400 |
| Serial | | Retrace | |
| Socket resource (VISA resource string) | | RF OFF | 150, 605 |
| USB VISA resource string | 124 | RF OFF mode | |
| Remote connection | | attenuator settings | 529 |
| Not working | 39 | RF off state | |
| Remote control | | Reference oscillator | 160 |
| Basics | 309 | RF ON | 150 |
| GPIB address | 317 | RF ON/OFF key | 149 |
| Interfaces | 309 | RF output | |
| Protocols | | Power-on state | 186 |
| Remote Control | | RF Output | |
| GPIB | 320 | RF output level | |
| Remote control switchover | | RF output state | |
| Remote trace | 310 | | 150, 100 |
| | F-7 | RF signal | 45 |
| LXI | | Frequency | 15 |
| Removing sensitive data | | Frequency dialog | |
| REN | 613 | Frequency offset | |
| Rename | 146 | Main PLL bandwidth | 154 |
| File | 384 | Multiplier | 154 |
| Repetition | | Offset | 153 |
| Pulse Train | 303 | Phase | 157 |
| Reset | 167 | Phase adjustment | |
| List Mode | | Set frequency (status bar) | |
| Reset - RF sweep | | User variation | |
| Reset Auto Scale | | RF State | |
| | 200 222 | | 100 |
| Power Analysis | | RF sweep | 400 |
| Reset Delta Phase Display | | Step lin | |
| Reset instrument settings3 | | Step log | |
| Reset path | 359 | Step width | |
| Reset values | | Sweep step count | |
| Remote | 356 | RFSweep | 607 |
| Resolving network problems | 120 | Rotary knob | 22 |
| Restart network | | RS232 | |
| Setting | 120 | Baud rate | 124 |
| Retrace | | Parity | 124 |
| LF frequency sweep | 285 | Serial interface | |
| LF level sweep | | Stop bits | |
| RF frequency sweep | | Run Update | |
| RF level sweep | | Nun opuate | 110 |
| | | S | |
| Revisions | | 3 | |
| RF Blanking | | CAMDA/CMD | |
| RF During Power Search - ALC | 196 | SAMBA/SMB | 4.4- |
| RF frequency | | How to | |
| Main PLL bandwidth | 154 | Sample&Hold mode | 194 |
| Multiplier | 154 | Save | |
| Settings | 153 | Power Analysis | 243 |
| RF Frequency | | Save immediate | 142 |
| Set frequency (dialog) | | Save instrument settings | 142, 357, 385 |
| RF frequency marker | | Save intermediate | |
| RF Frequency Marker | 17 1 | Save Options Hardcopy | |
| | 170 | Power Analysis | 243 |
| Active Marker | | Save to Ref - Power Analysis | |
| Amplitude | | | |
| Amplitude Marker | | Scan State – Amplitude Modulation | 260 |
| Frequency | | SCPI | , - |
| Polarity | 568 | LAN Services | |
| RF frequency sweep | | Parameters | |
| Retrace | 168 | Syntax | |
| RF frequency vs. RF output frequency | | Version | 310 |
| RF Level | | SCPI - error messages | 609 |
| limit | 184 208 | SCPI confirmed commands | |
| | 10-1, 200 | | |

| SCPI remote trace | | Setting not possible | 82 |
|---|------|--------------------------------------|---------------|
| LXI | 57 | Setting parameters | 83 |
| Screen Saver | 120 | Settings | |
| SDC | | Check front panel | 114 |
| Search Once - ALC | 196 | Pulse generator | 297 |
| Security | | Reference oscillator | 159 |
| Accept settings | 134 | Setup | |
| Annotation amplitude (setup) | 132 | Accept security settings | 134 |
| Annotation frequency (setup) | 132 | Annotation amplitude (security) | 132 |
| Change password (setup) | 130 | Annotation frequency (security) | 132 |
| Confirm password (setup) | 130 | Change password (security) | 130 |
| Confirm user password (setup) | 130 | Confirm password (security) | 130 |
| Display lock (setup) | 132 | Confirm password (user) | 130 |
| New password (setup) | 130 | Date | 116 |
| New user password (setup) | 130 | Display lock (security) | 132 |
| Old password (setup) | 130 | Internal adjustments | 104 |
| Security password | | LAN services | |
| User interface | | New password (security) | 130 |
| User password | 130 | New password (user) | |
| Security password | | Old password (security) | |
| Security | 130 | Old password (user) | |
| Setup | | Perfoming the front panel test | |
| Security Password | | Security password | |
| Setup | 134 | Time | |
| Security settings | | Timezone | |
| LAN services | 131 | User interface (security) | 132 |
| Security Settings | | User password | |
| Security Password | 134 | Setup key | |
| USB storage | | Shape | |
| User Name | | LF Generator 260, 263, | 266, 278, 289 |
| Write nonvolatile memory | | LF Level Sweep | |
| Select ASCII Destination | | RF Level Sweep | |
| Pulse Train data | 305 | Shape - LF Frequency Sweep | |
| User Correction data | | Shape - LF Level Sweep | |
| Select ASCII Destination - List Mode data | | Shape - RF Sweep | |
| Select ASCII Source | | Show level permanent - Power Sensors | |
| Pulse Train data | 305 | Single Pulse | |
| User Correction data | | Slope | 200 |
| Select List | | Pulse trigger input | 301 |
| Select NRP File | | Slope - pulse trigger input | |
| Select operation | | SMB (Samba) | 270 |
| File menu | 1/12 | LAN Services | 131 |
| Select Pulse Train Data | | SMZ Info | 131 |
| Select sensor | | FW-Version | 112 |
| Power viewer | 100 | MAX Freq | |
| Self-test | 199 | Min Freq | |
| Remote | 357 | Revision | |
| Sensor | 337 | | |
| | 207 | Serial number | |
| NRP-Z level control | | Type | |
| NRP-Z power control | | Software options | 108 |
| Power viewer | | Source | 050 |
| Sequential commands | 340 | AM | |
| Serial | | External Level Control | |
| Remote control interface | | FM | |
| Serial bus | 107 | Level Sweep Trigger | |
| Serial interface | | LF output | |
| RS232 | | LF sweep trigger | |
| Serial numbers | 107 | LF Sweep Trigger | 291 |
| Service manual | | List Mode | |
| Service request (SRQ) | · | Power sensors | 202 |
| Service request enable register (SRE) | 347 | Pulse modulation | 271 |
| Remote | 357 | фМ | 265 |
| Set frequency | | Reference oscillator | |
| RF signal | 153 | Reference Oscillator | 558 |
| Set IDN and OPT to default | | RF frequency sweep trigger | |
| Emulation mode | 126 | Source - Power Sensors | |
| Setting commands | 311 | Source – ASK | |
| - | | | , |

| Source – FSK | 268 | ListMode | 607 |
|---------------------------------------|----------|----------------------------|---------------|
| Source – PSK | | LOC-LLO | |
| Source Import/Export | | OvenCold | |
| | 205 | REM-LLO | |
| Pulse Train data | | | |
| User Correction data | 252 | REMOTE | |
| Spacing | | RFSweep | 607 |
| Level Sweep | 191 | S&H | 607 |
| Power Analysis | 221 | Table | 607 |
| Spacing - LF Sweep | | UCorr | |
| | | | |
| Spacing - RF Sweep | | Status registers | |
| Span (RF sweep) | | CONDition | |
| SPD | 316 | ENABle | 346 |
| SPE | 316 | EVENt | 346 |
| Special characters | | model | 345 |
| SCPI | 335 | NTRansition | |
| | | | |
| SRE | | parts | |
| SRE (service request enable register) | | PTRansition | |
| SRQ | 613 | Status reporting system | 343 |
| SRQ (service request) | 347, 349 | Application | 349 |
| SSH | • | Common commands | |
| LAN Services | 131 | STB | |
| | | | |
| Standby mode | 18 | Step | |
| Start | | Level Sweep | |
| Power Analysis | 214 | Power Analysis | 220 |
| Power Sensors | 395 | Step lin | |
| Start Freg | | LF sweep | 285 |
| • | | | |
| LF Sweep | | RF sweep | 109 |
| Start Freq - LF sweep | | Step Lin | |
| Start Level | 190 | LF Sweep | 295 |
| Start/Stop Display Update | 113 | Step log | |
| Startup complete | 590 | LF sweep | 285 |
| State | | RF sweep | |
| | 161 | | 109 |
| Adjustment (reference oscillator) | | Step Log | 00- |
| ALC | | LF Sweep | 295 |
| Chirp modulation | 273 | Step width | |
| LF Frequency Marker | 287 | Frequency | 154 |
| List mode | | Level Sweep | |
| NRP-Z level control | | LF sweep | |
| | | • | |
| NRP-Z power control | | RF sweep | 169 |
| Power sensors | 200 | Stop bits | |
| Pulse modulation | 270 | RS232 interface | 124 |
| фМ | 265 | Stop Freq | |
| RF frequency marker | | LF Sweep | 294 |
| . , | | | |
| State - Chirp modulation | | Stop Freq - LF Sweep | |
| State - RF Level Marker | | Stop Freq - RF Sweep | 167 |
| State - User Correction | 248 | Stop Level | 190 |
| Status | | Storing | 603 |
| Network settings | 118 | Subnet mask | |
| Queries | | Network settings | 110 |
| | 350 | 9 | |
| Status byte | | Suffixes | |
| Remote | 354, 357 | Support | 612 |
| Status byte (STB) | 347 | Sweep | |
| Status information | 605 | LF start frequency | 294 |
| Status Information | | LF stop frequency | |
| | 110 | | |
| status messages | | Retrace (LF frequency) | |
| FREQ OFFSET | 605 | Retrace (LF level) | 295 |
| MOD OFF | 605 | Retrace (RF frequency) | 168 |
| RF OFF | 605 | Retrace (RF level) | |
| Status messages | | RF frequency sweep | |
| <u> </u> | 607 | | |
| ALC On | | Start Level | |
| AttFixed | | Stop Level | |
| Auto | 607 | Trigger | 167, 190, 293 |
| BUSY | 606 | Sweep - Center frequency | |
| EXT REF | | Sweep - LF start frequency | |
| LEVEL OFFSET | | | |
| | | Sweep - LF stop frequency | |
| LevelSweep | | Sweep - Trigger | 282 |
| LESWeen | 607 | | |

| Sweep shape | | Trapezoid High – LF Generator | |
|---|---|--|-----------------|
| LF Level Sweep | | Trapezoid Period – LF Generator | |
| RF Level Sweep | | Trapezoid Rise – LF Generator | |
| Sweep shape - LF Frequency Sweep | | Triangle Period – LF Generator | |
| Sweep shape - LF Level Sweep | | Triangle Rise – LF Generator | 278 |
| Sweep shape - RF Sweep | 168 | Trigger | |
| Sweep spacing | | Event (remote) | |
| Level Sweep | 191 | Power Sensors | |
| Sweep spacing - RF Sweep | 167 | Trigger Input Slope170, 177, 1 | 92, 286, 29 |
| Sweep step count | | Trigger level | |
| LF sweep | 285 | Chirp Modulation | 27 |
| RF sweep | 169 | Trigger Level | |
| Sweep Step Count | | Input/Trigger Settings | 30 |
| Level Sweep | 191 | Power Sensors | 24 |
| Sweep time | | Trigger mode | |
| RF sweep | 170 | Chirp Modulation | 27 |
| Synchronization bandwidth | | Pulse modulation | 29 |
| reference oscillator | 160 | Trigger Mode | |
| Synchronize to internal clock | | Power Sensors | 240 |
| Pulse Modulation | 271 | Trigger source | |
| Syntax elements | | LF sweep | 28 ⁻ |
| SCPI | 338 | RF frequency sweep | |
| System | | Trigger Source | |
| Identification | 125 | Level Sweep | 18 ¹ |
| IDN string | | LF Sweep | |
| Language | | List Mode | |
| Network Mac address | | Triggering sweep manually | |
| Set IDN and OPT to default | | . , | |
| | | Troubleshooting | 60: |
| System directory | 3// | TS-USB1 | 404 |
| Т | | USB adapter | 12. |
| 1 | | Туре | 00 |
| Target level | | Power sensors | |
| = | 200 | Type - Power Sensors | 438, 439 |
| NRP-Z level control | | 11 | |
| NRP-Z power control | 535 | U | |
| Test | | | 00 |
| | 445 | 110 | |
| Check front panel | 115 | UCorr | |
| Check front panel | | Ultr@VNC | |
| Check front panel Time Setup | 117 | Ultr@VNC
Unit | 44 |
| Check front panel Time Setup UTC | 117 | Ultr@VNC
Unit
Power sensors | 44 |
| Check front panel Time Setup UTC Timezone | 117
117 | Ultr@VNC
Unit
Power sensors
Units | 200 |
| Check front panel Time Setup UTC | 117
117 | Ultr@VNC
Unit
Power sensors | 200 |
| Check front panel Time Setup UTC Timezone | 117
117 | Ultr@VNC
Unit
Power sensors
Units | |
| Check front panel | 117
117 | Ultr@VNC Unit Power sensors Units Input | |
| Check front panel Time Setup UTC Timezone Setup UTC UTC | 117
117
117
117 | Ultr@VNC Unit Power sensors Units Input UNIX controller | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing | 117
117
117
117 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate | 117
117
117
117
221
227 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis | 117
117
117
117
221
227 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value | 117
117
117
117
221
227
218 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power | 117
117
117
117
221
227
218 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power | 117
117
117
117
221
227
218 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle | | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time | | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power | | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power | | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge | | Ultr@VNC Unit Power sensors | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge | 117 117 117 117 117 221 227 228 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. Loop Gain - Correction Data | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power | 117 117 117 117 221 227 228 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain correction data | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power | 117 117 117 117 221 227 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain correction data Use peak power | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level | 117 117 117 117 221 227 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain - Correction Data Use peak power NRP-Z level control | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time | 117 117 117 117 117 221 227 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain - Correction Data Use peak power NRP-Z level control NRP-Z power control | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level | 117 117 117 117 117 221 227 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separate Frequency - Power Analysis | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time | 117 117 117 117 117 221 227 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop Gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separameter | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time Pulse Period | 117 117 117 117 117 221 227 228 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separate Frequency - Power Analysis | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time Pulse Period Pulse Start Time | 117 117 117 117 117 221 227 228 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. loop Gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separameter | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time Pulse Start Time Pulse Stop Time | 117 117 117 117 117 117 221 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. Loop Gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separameter NRP-Z power control Use SParameter NRP-Z power control | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time Pulse Stop Time Pulse Stop Time Pulse Top Level | 117 117 117 117 117 117 221 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. Loop Gain - Correction Data Use ext. loop gain correction data Use peak power NRP-Z level control NRP-Z power control Use Separate Frequency - Power Analysis Use SParameter NRP-Z power viewer Use SParameters Power Analysis | |
| Check front panel Time Setup UTC Timezone Setup UTC Timing Power Analysis Trace - Gate Trace Color - Power Analysis Trace Value Average Power Distal Power Duty Cycle Fall Time Mesial Power Minimal Power Overshoot Falling Edge Overshoot Rising Edge Peak Power Proximal Power Pulse Base Level Pulse Off Time Pulse Stop Time Pulse Top Level Pulse Top Level Pulse Width | 117 117 117 117 117 117 221 227 218 444 444 444 444 444 444 444 444 444 4 | Ultr@VNC Unit Power sensors Units Input UNIX controller UP Update - Setup System Update sensor USB Adapter TS-USB1 Interfaces Remote control interface USB Storage - Setup Use as X Scale - Power Analysis Use default aperture time Power sensors Use ext. level correction data Use ext. Loop Gain - Correction Data Use peak power NRP-Z level control NRP-Z power control Use Separameter NRP-Z power control NRP-Z power viewer Use SParameters | |

| User Correction | |
|--------------------------------|------|
| User interface | 240 |
| Lock (security) | 132 |
| User Name - Setup | |
| User password | |
| Security | 130 |
| Setup | 130 |
| User variation | |
| RF frequency settings | 154 |
| Variation active | |
| Variation step | 155 |
| V | |
| V | |
| V/GHz Ratio | 121 |
| Value - User Correction | |
| Variation Active | |
| Variation step | |
| Variation Step154, | |
| Video Polarity | |
| Pulse Modulation | 271 |
| VISA | 312 |
| Libraries | 310 |
| Resource string310, | 312 |
| VISA resource string | |
| Ethernet | |
| GPIB | |
| HISLIP | |
| Serial | |
| Socket | |
| USB | 124 |
| Visible Rever Applysis | 242 |
| Power AnalysisVNC | 242 |
| LAN Services | 121 |
| VNC connection | |
| Voltage | . ++ |
| LF output | 289 |
| VXI protocol | |
| | 0.0 |
| W | |
| | |
| Wait | |
| Remote | |
| Wait Time | |
| Warnings | 800 |
| Web Control LXI | 55 |
| White papers | |
| White space | |
| Width | 550 |
| Double pulse | 298 |
| Pulse generator | |
| Workgroup | |
| Network settings | |
| | 118 |
| Write nonvolatile memory | 118 |
| Write nonvolatile memory Setup | |
| Setup | |
| | |
| Setup | |

Z

| Zero | |
|----------------------|----------|
| power sensors | 201, 207 |
| Zero - Power Sensors | 228, 439 |
| Zeroconf | |
| IP address | 611 |
| Zoom | |
| Pulse Train | 302 |
| Zoom Position | |
| Pulse Train | 302 |
| | |